Admissibility of Π_2 -Inference Rules: interpolation, model completion, and contact algebras

Luca Carai, University of Salerno

Joint work with: Nick Bezhanishvili, Silvio Ghilardi, and Lucia Landi

TACL 2022, Coimbra

21 June 2022

The symmetric strict implication calculus

Definition

An open subset U of a topological space is called regular open if U = int(cl(U)).

Let X be a compact Hausdorff space. The set RO(X) of regular open subsets of X equipped with the well-inside relation $U \prec V$ iff $cl(U) \subseteq V$ forms a de Vries algebra.

Definition

A de Vries algebra is a complete boolean algebra equipped with a binary relation \prec satisfying

- (S1) $0 \prec 0$ and $1 \prec 1$;
- (S2) $a \prec b, c$ implies $a \prec b \land c$;
- (S3) $a, b \prec c$ implies $a \lor b \prec c$;
- (S4) $a \le b \prec c \le d$ implies $a \prec d$;
- (S5) $a \prec b$ implies $a \leq b$;
- (S6) $a \prec b$ implies $\neg b \prec \neg a$; (S7) $a \prec b$ implies there is c with $a \prec c \prec b$;
- (S8) $a \neq 0$ implies there is $b \neq 0$ with $b \prec a$.

All the information carried by $(RO(X), \prec)$ is enough to recover the compact Hausdorff space X up to homeomorphism.

Moreover, every de Vries algebra is isomorphic to one of the form $(RO(X), \prec)$ for some compact Hausdorff space X.

Theorem (De Vries duality (1962))

The category of compact Hausdorff spaces is dually equivalent to the category of de Vries algebras.

Let (B, \prec) be a de Vries algebra. We can turn (B, \prec) into a boolean algebra with operators by replacing \prec with a binary operator with values in $\{0,1\}$ (the bottom and top of B).

$$a \rightsquigarrow b = \begin{cases} 1 & \text{if } a \prec b, \\ 0 & \text{otherwise.} \end{cases}$$

 \rightsquigarrow is the characteristic function of $\prec \subseteq B \times B$.

Definition

Let $\mathcal V$ be the variety generated by de Vries algebras in the language of boolean algebras with a binary operator \leadsto . We call symmetric strict implication algebras the algebras of $\mathcal V$.

Definition (G. Bezhanishvili, N. Bezhanishvili, T. Santoli, Y. Venema (2019))

The symmetric strict implication calculus S²IC is given by the axioms

- $[\forall]\varphi \leftrightarrow (\top \leadsto \varphi)$,
- $(\bot \leadsto \varphi) \land (\varphi \leadsto \top)$,
- $[(\varphi \lor \psi) \leadsto \chi] \leftrightarrow [(\varphi \leadsto \chi) \land (\psi \leadsto \chi)],$
- $[\varphi \leadsto (\psi \land \chi)] \leftrightarrow [(\varphi \leadsto \psi) \land (\varphi \leadsto \chi)],$
- $(\varphi \leadsto \psi) \to (\varphi \to \psi)$,
- $(\varphi \leadsto \psi) \leftrightarrow (\neg \psi \leadsto \neg \varphi)$,
- $\bullet \ [\forall]\varphi \to [\forall][\forall]\varphi,$
- $\bullet \neg [\forall] \varphi \rightarrow [\forall] \neg [\forall] \varphi,$
- $(\varphi \leadsto \psi) \leftrightarrow [\forall](\varphi \leadsto \psi)$,
- $[\forall]\varphi \rightarrow (\neg[\forall]\varphi \rightsquigarrow \bot)$,

and modus ponens (for \rightarrow) and necessitation (for $[\forall]$).

Theorem (G. Bezhanishvili, N. Bezhanishvili, T. Santoli, Y. Venema (2019))

 $\vdash_{\mathsf{S}^2\mathsf{IC}} \varphi$ iff $(B,\leadsto) \vDash \varphi$ for every symmetric strict impl. algebra (B,\leadsto) .

 $\vdash_{\mathsf{S}^2\mathsf{IC}} \varphi$ iff $(B, \prec) \vDash \varphi$ for every de Vries algebra (B, \prec) .

 $\vdash_{\mathsf{S}^2\mathsf{IC}} \varphi$ iff $(\mathsf{RO}(X), \prec) \vDash \varphi$ for every compact Hausdorff space X.

Analogous strong completeness results hold.

Therefore, we can think of S^2IC as the modal calculus of compact Hausdorff spaces where propositional letters are interpreted as regular opens.

When a symmetric strict implication algebra is simple, \leadsto becomes the characteristic function of a binary relation. Simple symmetric strict implication algebras correspond exactly to contact algebras.

Definition

A contact algebra is a boolean algebra equipped with a binary relation \prec satisfying the axioms:

- (S1) $0 \prec 0$ and $1 \prec 1$;
- (S2) $a \prec b, c$ implies $a \prec b \land c$;
- (S3) $a, b \prec c$ implies $a \lor b \prec c$;
- (S4) $a \le b \prec c \le d$ implies $a \prec d$;
- (S5) $a \prec b$ implies $a \leq b$;
- (S6) $a \prec b$ implies $\neg b \prec \neg a$.

The variety of symmetric strict implication algebras is a discriminator variety and hence it is generated by its simple algebras which correspond to contact algebras. Therefore,

$$\vdash_{\mathsf{S}^2\mathsf{IC}} \varphi$$
 iff $(B, \prec) \vDash \varphi$ for every contact algebra (B, \prec) .

Therefore, (S7) and (S8) are not expressible in S²IC.

- (S7) $a \prec b$ implies there is c with $a \prec c \prec b$;
- (S8) $a \neq 0$ implies there is $b \neq 0$ with $b \prec a$.

What does it mean from the syntactic point of view?

Theorem

For each Π_2 -sentence Φ there is an inference rule ρ such that

$$\vdash_{\mathsf{S}^2\mathsf{IC}+\rho} \varphi$$
 iff $(\mathsf{B},\prec) \vDash \varphi$ for every contact algebra (B,\prec) satisfying Φ .

The rules corresponding to (S7) and (S8) are

$$(\rho_7) \frac{(\varphi \leadsto p) \land (p \leadsto \psi) \to \chi}{(\varphi \leadsto \psi) \to \chi} \qquad (\rho_8) \frac{p \land (p \leadsto \varphi) \to \chi}{\varphi \to \chi}$$

That (S7) and (S8) are not expressible in S^2IC corresponds to the fact that these two rules are admissible in S^2IC .

 Π_2 -rules

Definition

An inference rule ρ is a Π_2 -rule if it is of the form

$$\frac{F(\underline{\varphi}/\underline{x},\underline{y})\to\chi}{G(\underline{\varphi}/\underline{x})\to\chi}$$

where $F(\underline{x}, y)$, $G(\underline{x})$ are propositional formulas.

We say that heta is obtained from ψ by an application of the rule ho if

$$\psi = F(\underline{\varphi}/\underline{x}, \underline{y}) \to \chi \text{ and } \theta = G(\underline{\varphi}/\underline{x}) \to \chi,$$

where $\underline{\varphi}$ is a tuple of formulas, χ is a formula, and \underline{y} is a tuple of propositional letters not occurring in φ and χ .

Let $\mathcal S$ be a propositional modal system. We say that the rule ρ is admissible in $\mathcal S$ if $\vdash_{\mathcal S+\rho} \varphi$ implies $\vdash_{\mathcal S} \varphi$ for each formula φ .

Conservative extensions

First method

We say that $\varphi(\underline{x}) \wedge \psi(\underline{x},\underline{y})$ is a conservative extension of $\varphi(\underline{x})$ in \mathcal{S} if

$$\vdash_{\mathcal{S}} \varphi(\underline{x}) \land \psi(\underline{x},\underline{y}) \rightarrow \chi(\underline{x}) \text{ implies } \vdash_{\mathcal{S}} \varphi(\underline{x}) \rightarrow \chi(\underline{x})$$

for every formula $\chi(\underline{x})$.

Theorem

If $\mathcal S$ has the interpolation property, then a Π_2 -rule ρ is admissible in $\mathcal S$ iff $G(\underline x) \wedge F(\underline x,\underline y)$ is a conservative extension of $G(\underline x)$ in $\mathcal S$.

Therefore, if S has the interpolation property and conservativity is decidable in S, then Π_2 -rules are effectively recognizable in S.

Corollary

The admissibility problem for Π_2 -rules is

- CONEXPTIME-complete in K and S5;
- in ExpSpace and NexpTime-hard in \$4.

Second method Uniform interpolants

An S5-modality $[\forall]$ is called a universal modality if

$$\vdash_{\mathcal{S}} \bigwedge_{i=1}^{n} [\forall] (\varphi_i \leftrightarrow \psi_i) \rightarrow (\Box [\varphi_1, \dots, \varphi_n] \leftrightarrow \Box [\psi_1, \dots, \psi_n])$$

for every modality \square of \mathcal{S} .

If $\varphi(\underline{x},\underline{y})$ is a formula, its right global uniform pre-interpolant $\forall_{\underline{x}}\varphi(\underline{y})$ is a formula such that for every $\psi(\underline{y},\underline{z})$ we have that

$$\psi(\underline{y},\underline{z}) \vdash_{\mathcal{S}} \varphi(\underline{x},\underline{y}) \text{ iff } \psi(\underline{y},\underline{z}) \vdash_{\mathcal{S}} \forall_{\underline{x}} \varphi(\underline{y}).$$

Theorem

Suppose that S has uniform global pre-interpolants and a universal modality $[\forall]$. Then a Π_2 -rule ρ is admissible in S iff

$$\vdash_{\mathcal{S}} [\forall] \forall_{y} (F(\underline{x}, y) \to z) \to (G(\underline{x}) \to z).$$

Third method
Simple algebras and model completions

To a Π_2 -rule we associate the first-order formula

$$\Pi(\rho) := \forall \underline{x}, z \Big(G(\underline{x}) \nleq z \Rightarrow \exists \underline{y} : F(\underline{x}, \underline{y}) \nleq z \Big).$$

Theorem

Suppose that S has a universal modality. A Π_2 -rule ρ is admissible in S iff for each simple S-algebra B there is a simple S-algebra C such that B is a subalgebra of C and $C \models \Pi(\rho)$.

In the presence of a universal modality, an \mathcal{S} -algebra is simple iff

$$[\forall] x = \begin{cases} 1 & \text{if } x = 1, \\ 0 & \text{otherwise.} \end{cases}$$

Moreover, S-algebras form a discriminator variety. Therefore, the variety of S-algebras is generated by the simple S-algebras.

The model completion of a universal first-order theory T, if it exists, is the theory of the existentially closed models of T.

Let T be a universal theory in a finite language. If T is locally finite and has the amalgamation property, then it admits a model completion.

Theorem

Suppose that $\mathcal S$ has a universal modality and let $T_{\mathcal S}$ be the first-order theory of the simple $\mathcal S$ -algebras. If $T_{\mathcal S}$ has a model completion $T_{\mathcal S}^\star$, then a Π_2 -rule ρ is admissible in $\mathcal S$ iff $T_{\mathcal S}^\star\models\Pi(\rho)$ where

$$\Pi(\rho) := \forall \underline{x}, z \Big(G(\underline{x}) \nleq z \Rightarrow \exists \underline{y} : F(\underline{x}, \underline{y}) \nleq z \Big).$$

Model completion of contact algebras and

admissibility in S²IC

Theorem

The theory of contact algebras Con is locally finite and has the amalgamation property. Therefore, it admits a model completion Con*.

Moreover, the modality $[\forall]$ defined by $[\forall]\varphi := \top \leadsto \varphi$ is a universal modality. Thus, our third criterion applies.

Proposition

Let (B, \prec) be a contact algebra. We have that (B, \prec) is existentially closed iff for any finite subalgebra $(B_0, \prec) \subseteq (B, \prec)$ and for any finite extension $(C, \prec) \supseteq (B_0, \prec)$ there exists an embedding $(C, \prec) \hookrightarrow (B, \prec)$ such that the following diagram commutes

$$(B, \prec)$$

$$\uparrow$$

$$(B_0, \prec) \hookrightarrow (C, \prec)$$

Theorem

The model completion Con* of the theory of contact algebras is finitely axiomatizable.

An axiomatization is given by the axioms of contact algebras together with the following three sentences.

$$\forall a, b_1, b_2 \ (a \neq 0 \& (b_1 \lor b_2) \land a = 0 \& a \prec a \lor b_1 \lor b_2 \Rightarrow$$

 $\exists a_1, a_2 \ (a_1 \lor a_2 = a \& a_1 \land a_2 = 0 \& a_1 \neq 0 \& a_2 \neq 0 \& a_1 \prec a_1 \lor b_1$
 $\& a_2 \prec a_2 \lor b_2))$

$$\forall a, b \ (a \land b = 0 \& a \not \prec \neg b \Rightarrow \exists a_1, a_2 \ (a_1 \lor a_2 = a \& a_1 \land a_2 = 0 \& a_1 \not \prec \neg b \& a_2 \not \prec \neg b \& a_1 \prec \neg a_2))$$

$$\forall a \ (a \neq 0 \Rightarrow \exists a_1, a_2 \ (a_1 \lor a_2 = a \& a_1 \land a_2 = 0 \& a_1 \prec a \& a_1 \not \prec a_1))$$

The two Π_2 -rules we saw at the beginning

$$(\rho_7) \quad \frac{(\varphi \leadsto p) \land (p \leadsto \psi) \to \chi}{(\varphi \leadsto \psi) \to \chi} \qquad (\rho_8) \quad \frac{p \land (p \leadsto \varphi) \to \chi}{\varphi \to \chi}$$

correspond to the Π_2 -sentences

$$\Pi(\rho_7) \quad \forall x_1, x_2, y (x_1 \leadsto x_2 \nleq y \to \exists z : (x_1 \leadsto z) \land (z \leadsto x_2) \leq y);$$

$$\Pi(\rho_8) \quad \forall x, y (x \nleq y \to \exists z : z \land (z \leadsto x) \nleq y).$$

We can use our result to show that these rules are admissible in S²IC. Indeed, it is sufficient to use the finite axiomatization of Con* to show that Con* proves $\Pi(\rho_7)$ and $\Pi(\rho_8)$.

The Π_2 -rule

$$(\rho_9) \quad \frac{(p \leadsto p) \land (\varphi \leadsto p) \land (p \leadsto \psi) \to \chi}{(\varphi \leadsto \psi) \to \chi}$$

corresponds to the Π_2 -sentence

$$\Pi(\rho_9) \quad \forall x, y, z \, (x \leadsto y \nleq z \to \exists u : (u \leadsto u) \land (x \leadsto u) \land (u \leadsto y) \nleq z)$$

which holds in $(RO(X), \prec)$ iff X is a Stone space.

Using the finite axiomatization it can be shown that Con^* proves $\Pi(\rho_9)$. Therefore, we obtain as a corollary that S^2IC is complete wrt Stone spaces.

Corollary

$$\vdash_{\mathsf{S}^2\mathsf{IC}} \varphi$$
 iff $\mathsf{RO}(X) \vDash \varphi$ for every Stone space X .

This fact was proved in (G. Bezhanishvili, N. Bezhanishvili, T. Santoli, Y. Venema (2019)) using different methods.

THANK YOU!