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Priestley spaces

Definition

A Priestley space is a triple (X , τ,≤) where:

(X , τ) is a compact topological space;

(X ,≤) is a poset;

(Priestley separation axiom)
for all x , y ∈ X if x � y then there is a clopen upset U such that
x ∈ U and y /∈ U.
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Priestley duality

There is a dual equivalence between the category of bounded distributive
lattices and the category of Priestley spaces and continuous
order-preserving maps.

BDL
d∼= Pries

To any bounded distributive lattice L it is associated the set X of its prime
filters ordered by inclusion and endowed with the topology generated by
the basis {β(a) \ β(b) | a, b ∈ L}. Where β(a) = {x ∈ X | a ∈ x}.
To any Priestley space X it is associated the lattice L of its clopen upsets.
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Esakia spaces and Esakia duality

Definition

A Priestley space is called an Esakia space if the downset generated by
every clopen is clopen.

Or equivalently, if the downset generated by every
open is open.
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Esakia spaces and Esakia duality

Definition

A Priestley space is called an Esakia space if the downset generated by
every clopen is clopen. Or equivalently, if the downset generated by every
open is open.

Esakia duality is a restricted version of Priestley duality: it states the
existence of a dual equivalence between the category of Heyting algebras
and the category of Esakia spaces and continuous p-morphisms.

Hey
d∼= Esa



Priestley that are not Esakia

We want to give a characterization of Priestley spaces that are not Esakia
by looking at their subspaces. We consider three simple Priestley spaces
that are not Esakia that we call Z1,Z2,Z3.
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The space Z2
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The space Z3
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Forbidden configurations

Definition

Let X be a Priestley space. We say that Zi (i = 1, 2, 3) is a forbidden
configuration for X if

there is a topological and order embedding e : Zi → X and

there is an open neighborhood U of e(y) such that e−1(↓U) = {x , y}.

X
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Main result

Theorem

A metrizable Priestley space X is not an Esakia space iff one of Z1,Z2,Z3

is a forbidden configuration for X .



Proof of the main result
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Proof of the main result

Case 1: {wi} contains an infinite chain.
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Proof of the main result

Case 2a: {wi} contains an infinite anti-chain above x .
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Proof of the main result

Case 2b: {wi} contains an infinite anti-chain not above x .
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Lattice-theoretic statement

We now want to translate this theorem to its lattice-theoretic dual
statement.

We first consider the lattices dual to Z1,Z2,Z3 which we call
L1, L2, L3, respectively.
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¬c1 = c1 → 0 doesn’t exist.
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The lattice L2

Pfin(ω)

∅

ω

¬c2 = c2 → ∅ doesn’t exist.
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The space Z3
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The lattice L3

Pfin(ω)× {0}

Pfin(ω)× {1}

Pcofin(ω)× {1}

¬c3 = c3 → (∅, 0) doesn’t exist.



The lattice L3

Pfin(ω)× {0}

(∅, 1) = c3

Pfin(ω)× {1}

Pcofin(ω)× {1}

¬c3 = c3 → (∅, 0) doesn’t exist.



Metrizability and countability

Proposition

Let L be a bounded distributive lattice and X its dual Priestley space. X is
metrizable if and only if L is countable.

Proof.

It is a well-known result in general topology that a compact Hausdorff
space X is metrizable if and only if it is second countable, i.e. it has a
countable basis.
Thus, if X is a metrizable Priestley space, then it is second countable. This
implies that every clopen is a finite union of elements from the countable
basis. In particular the set of clopen upsets, and so L, is countable.
On the other hand, if L is countable then X has countably many clopen
upsets and therefore countably many clopen subsets which are a basis. So
X is second countable and hence metrizable.
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Algebraic dual statement of the main result

Definition

Let L be a bounded distributive lattice and a, b ∈ L. Let Ia→b be the ideal

Ia→b := {c ∈ L | c ∧ a ≤ b}

Remark

Ia→b is principal iff a→ b exists in L and, in that case, Ia→b = ↓(a→ b).

Theorem

Let L be a countable bounded distributive lattice. Then L is not a Heyting
algebra iff one of Li (i = 1, 2, 3) is a homomorphic image of L such that
the homomorphism hi : L→ Li satisfies the following property:
There are a, b ∈ L such that hi (Ia→b) = Ici→0, where c1, c2, c3 are the
elements described above.



Algebraic dual statement of the main result

Definition

Let L be a bounded distributive lattice and a, b ∈ L. Let Ia→b be the ideal

Ia→b := {c ∈ L | c ∧ a ≤ b}

Remark

Ia→b is principal iff a→ b exists in L and, in that case, Ia→b = ↓(a→ b).

Theorem

Let L be a countable bounded distributive lattice. Then L is not a Heyting
algebra iff one of Li (i = 1, 2, 3) is a homomorphic image of L such that
the homomorphism hi : L→ Li satisfies the following property:

There are a, b ∈ L such that hi (Ia→b) = Ici→0, where c1, c2, c3 are the
elements described above.



Algebraic dual statement of the main result

Definition

Let L be a bounded distributive lattice and a, b ∈ L. Let Ia→b be the ideal

Ia→b := {c ∈ L | c ∧ a ≤ b}

Remark

Ia→b is principal iff a→ b exists in L and, in that case, Ia→b = ↓(a→ b).

Theorem

Let L be a countable bounded distributive lattice. Then L is not a Heyting
algebra iff one of Li (i = 1, 2, 3) is a homomorphic image of L such that
the homomorphism hi : L→ Li satisfies the following property:
There are a, b ∈ L such that hi (Ia→b) = Ici→0, where c1, c2, c3 are the
elements described above.



The lattice L1

c1

0

1



The lattice L2

Pfin(ω)

∅

c2 = {0}

ω



The lattice L3

Pfin(ω)× {0}

(∅, 1) = c3

Pfin(ω)× {1}

Pcofin(ω)× {1}



Characterization of p-spaces

Definition

A p-algebra is a pseudocomplemented distributive lattice.
We call a Priestley space X a p-space provided the downset of each clopen
upset is clopen.

Priestley duality for p-algebras was developed by Priestley in 1975. A
bounded distributive lattice L is a p-algebra iff its dual Priestley space X is
a p-space.

Definition

Let X be a Priestley space. We say that Zi (i = 1, 2, 3) is a
p-configuration for X if Zi is a forbidden configuration for X and in
addition the open neighborhood U of e(y) is an upset.

Corollary

Let X be a metrizable Priestley space. X is not a p-space iff one of
Z1,Z2,Z3 is a p-configuration for X .
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Characterization of duals of co-Heyting algebras

We recall that co-Heyting algebras are order-duals of Heyting algebras.
The Priestley spaces dual to co-Heyting algebras are the ones with the
property that the upset of each clopen is clopen.

Let Z ∗1 ,Z
∗
2 ,Z

∗
3 be the Priestley spaces obtained by reversing the order in

Z1,Z2,Z3, respectively.

Then dualizing the result for Heyting algebras yields:

Corollary

A metrizable Priestley space X is not the dual of a co-Heyting algebra iff
there are a topological and order embedding e from one of Z ∗1 ,Z

∗
2 ,Z

∗
3 into

X and an open neighborhood U of e(y) such that e−1(↑U) = {x , y}.
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Characterization of duals of bi-Heyting algebras

Bi-Heyting algebras are the lattices which are both Heyting algebras and
co-Heyting algebras.

Priestley spaces dual to bi-Heyting algebras are the
ones in which the upset and downset of each clopen is clopen.

Putting together the results for Heyting algebras and co-Heyting algebras
yields:

Corollary

A metrizable Priestley space X is not dual to a bi-Heyting algebra iff one
of Z1,Z2,Z3 is a forbidden configuration for X or there are a topological
and order embedding e from one of Z ∗1 ,Z

∗
2 ,Z

∗
3 into X and an open

neighborhood U of e(y) such that e−1(↑U) = {x , y}.
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Counterexamples

In the proof we used the metrizability hypothesis only to find a sequence
{wi} contained in the complement of ↓U converging to x ∈ ↓U \ U.

U
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Note that for this step we actually just need X to be a sequential space.

Definition

A space X is called sequential if every non-closed subset contains a
sequence converging outside it.

The following examples show that the metrizability (sequentiality)
hypothesis cannot be dropped.
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Counterexamples

Note that every bounded distributive lattice L is a homomorphic image of
a Heyting algebra.

Let F be the free bounded distributive lattice generated
freely over L, then the identity on L induces an onto homomorphism from
F to L. It turns out that F is always a Heyting algebra.

Dually this means that every Priestley space embeds into an Esakia space.
More precisely, if the Priestley space is dual to the lattice L, then X
embeds into 2L where 2 is the poset {0 < 1} with the discrete topology.
The space 2L is endowed with the product topology and the product order
and it is an Esakia space. The embedding maps x ∈ X to the element of
2L corresponding to the set of clopen upsets containing x .
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Counterexamples

Therefore there is no way to characterize Esakia spaces by forbidding
embeddings of some set of Priestley spaces. We really need that additional
condition on the embedding.

The space 2L we just described is really big and complex for almost every
Priestley space X . In the following slides we present much simpler
examples of Esakia spaces into which Z1 and Z3 embed but for which they
are not forbidden configurations.
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Open problems

We don’t have any nice lattice-theoretic characterization of the lattices
dual to sequential Priestley spaces.

An obvious direction of the investigation would be trying to generalize the
theorem to the non-sequential case. It seems that the problem gets really
complex.
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