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ba`-algebras

Let X be a compact Hausdorff space. The set C(X ) of the real-valued
continuous functions on X has the structure of

ring
real vector space
lattice

which are compatible with each other (R-algebra and `-ring) and it is also
bounded: for every f we have −λ ≤ f ≤ λ for some λ ∈ R,
archimedean: for every f > 0 there is n such that f ≥ 1

n , i.e. there
are no “infinitesimal” elements.

The algebraic structures having these properties are called bounded
archimedean `-algebras, ba`-algebras for short.
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Gelfand duality

Every C(X ) is a ba`-algebra but not every ba`-algebra is isomorphic to
C(X ) for some compact Hausdorff space X .

Every ba`-algebra A has a norm defined by ||a|| = inf{λ ∈ R | |a| ≤ λ}
We say that A is uniformly complete if it is complete wrt the norm || ||.

Any uniformly complete ba`-algebra A is isomorphic to C(YA).
YA is the Yosida space of A, the set of maximal `-ideals of A with the
Zariski topology. YA is a compact Hausdorff space.

Theorem (Gelfand-Naimark-Stone duality)
uba` is dually equivalent to KHaus.
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Continuous relations

A continuous relation on a topological space X is a binary relation R such
that:

R[x ] is closed for every x ,
if F is closed in X , then R−1[F ] is closed,
if U is open in X , then R−1[U] is open.

They provide a natural generalization of continuous functions.
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From continuous relations to modal operators

Given a continuous relation R on a compact Hausdorff space X we define
a unary operator 2R on C(X ). For a continuous function f : X → R let

(2R f )(x) =
{

inf f (R[x ]) if R[x ] 6= ∅
1 otherwise.

It turns out that 2R f is a continuous function.

We also define 3R f = 1−2R(1− f ).
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From modal operators to continuous relations

Given a modal operator 2 on a ba`-algebra A, we can define R2 on YA by

xR2y iff for all a ≥ 0 (a ∈ y ⇒ 2a ∈ x)

We proved that R2 is a continuous relation on YA. This is technically
rather challenging, and requires a careful study of positive parts of `-ideals.
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Kripke frames are sets together with a relation.

A Kripke frame is called a compact Hausdorff frame if it is endowed with a
compact Hausdorff topology making its relation continuous.

Modal ba`-algebras are ba`-algebras together with a modal operator.

Theorem
muba` is dually equivalent to KHF.
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Esakia-Goldblatt duality

Stone spaces are compact Hausdorff spaces with a basis of clopens.

We can restrict our attention to Stone spaces with continuous relations
(very useful in modal logic) called descriptive frames.

Theorem (Esakia-Goldblatt duality)
DF is dually equivalent to ma.

A ba`-algebra is called clean if every element is the sum of an idempotent
and a unit.

Theorem
DF is dually equivalent to mcuba`.
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Correspondence theory

If 20 = 0

reflexivity 2a ≤ a

transitivity 2a ≤ 22a

symmetry 32a ≤ a



Thanks for your attention!
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