Modal operators on rings of continuous functions

Luca Carai

joint work with Guram Bezhanishvili and Patrick J. Morandi

New Mexico State University

El Paso, UTEP/NMSU workshop November 2, 2019

ring

- ring
- real vector space

- ring
- real vector space
- lattice

- ring
- real vector space
- lattice

which are compatible with each other ($\mathbb R\text{-algebra}$ and $\ell\text{-ring})$ and it is also

- ring
- real vector space
- lattice

which are compatible with each other (\mathbb{R} -algebra and ℓ -ring) and it is also

• bounded: for every f we have $-\lambda \leq f \leq \lambda$ for some $\lambda \in \mathbb{R}$,

- ring
- real vector space
- lattice

which are compatible with each other (\mathbb{R} -algebra and ℓ -ring) and it is also

- bounded: for every f we have $-\lambda \leq f \leq \lambda$ for some $\lambda \in \mathbb{R}$,
- archimedean: for every f > 0 there is *n* such that $f \ge \frac{1}{n}$, i.e. there are no "infinitesimal" elements.

- ring
- real vector space
- lattice

which are compatible with each other (\mathbb{R} -algebra and ℓ -ring) and it is also

- bounded: for every f we have $-\lambda \leq f \leq \lambda$ for some $\lambda \in \mathbb{R}$,
- archimedean: for every f > 0 there is *n* such that $f \ge \frac{1}{n}$, i.e. there are no "infinitesimal" elements.

The algebraic structures having these properties are called bounded archimedean ℓ -algebras, *ba* ℓ -algebras for short.

For example $A = \{f : [0,1] \rightarrow \mathbb{R} \mid f \text{ is piecewise polynomial}\}.$

For example $A = \{f : [0,1] \rightarrow \mathbb{R} \mid f \text{ is piecewise polynomial}\}.$

How can we characterize the ones isomorphic to C(X) for some X?

Every $ba\ell$ -algebra A has a norm defined by $||a|| = \inf\{\lambda \in \mathbb{R} \mid |a| \le \lambda\}$

Every **b** $a\ell$ -algebra A has a norm defined by $||a|| = \inf\{\lambda \in \mathbb{R} \mid |a| \le \lambda\}$ We say that A is uniformly complete if it is complete wrt the norm || ||.

Every **b** $a\ell$ -algebra A has a norm defined by $||a|| = \inf\{\lambda \in \mathbb{R} \mid |a| \le \lambda\}$ We say that A is uniformly complete if it is complete wrt the norm || ||.

Any uniformly complete **b** $a\ell$ -algebra A is isomorphic to $C(Y_A)$. Y_A is the Yosida space of A, the set of maximal ℓ -ideals of A with the Zariski topology. Y_A is a compact Hausdorff space.

Every **b** $a\ell$ -algebra A has a norm defined by $||a|| = \inf\{\lambda \in \mathbb{R} \mid |a| \le \lambda\}$ We say that A is uniformly complete if it is complete wrt the norm || ||.

Any uniformly complete **b** $a\ell$ -algebra A is isomorphic to $C(Y_A)$. Y_A is the Yosida space of A, the set of maximal ℓ -ideals of A with the Zariski topology. Y_A is a compact Hausdorff space.

Theorem (Gelfand-Naimark-Stone duality)

 $uba\ell$ is dually equivalent to KHaus.

• *R*[*x*] is closed for every *x*,

- *R*[*x*] is closed for every *x*,
- if F is closed in X, then $R^{-1}[F]$ is closed,

- *R*[*x*] is closed for every *x*,
- if F is closed in X, then $R^{-1}[F]$ is closed,
- if U is open in X, then $R^{-1}[U]$ is open.

- *R*[*x*] is closed for every *x*,
- if F is closed in X, then $R^{-1}[F]$ is closed,
- if U is open in X, then $R^{-1}[U]$ is open.

They provide a natural generalization of continuous functions.

Given a continuous relation R on a compact Hausdorff space X we define a unary operator \Box_R on C(X). For a continuous function $f : X \to \mathbb{R}$ let Given a continuous relation R on a compact Hausdorff space X we define a unary operator \Box_R on C(X). For a continuous function $f: X \to \mathbb{R}$ let

$$(\Box_R f)(x) = \begin{cases} \inf f(R[x]) & \text{if } R[x] \neq \emptyset \\ 1 & \text{otherwise.} \end{cases}$$

Given a continuous relation R on a compact Hausdorff space X we define a unary operator \Box_R on C(X). For a continuous function $f : X \to \mathbb{R}$ let

$$(\Box_R f)(x) = \begin{cases} \inf f(R[x]) & \text{if } R[x] \neq \emptyset \\ 1 & \text{otherwise.} \end{cases}$$

It turns out that $\Box_R f$ is a continuous function.

Given a continuous relation R on a compact Hausdorff space X we define a unary operator \Box_R on C(X). For a continuous function $f : X \to \mathbb{R}$ let

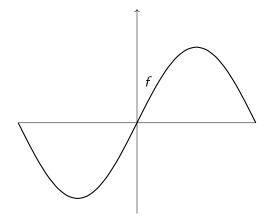
$$(\Box_R f)(x) = \begin{cases} \inf f(R[x]) & \text{if } R[x] \neq \emptyset \\ 1 & \text{otherwise.} \end{cases}$$

It turns out that $\Box_R f$ is a continuous function.

We also define $\Diamond_R f = 1 - \Box_R (1 - f)$.

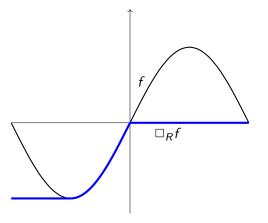
From continuous relations to modal operators

If R is a partial order, then



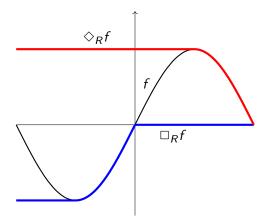
From continuous relations to modal operators

If *R* is a partial order, then $\Box_R f$ is the greatest increasing function below *f*,



From continuous relations to modal operators

If *R* is a partial order, then $\Box_R f$ is the greatest increasing function below *f*, $\Diamond_R f$ the least decreasing function above *f*.



A modal operator on a **b** $a\ell$ -algebra A is a unary function $\Box : A \to A$ satisfying for any $a, b \in A$ and $\lambda \in \mathbb{R}$:

A modal operator on a **b** $a\ell$ -algebra A is a unary function $\Box : A \to A$ satisfying for any $a, b \in A$ and $\lambda \in \mathbb{R}$:

$$(M1) \Box (a \land b) = \Box a \land \Box b$$

$$(M2) \Box \lambda = \lambda + (1 - \lambda) \Box 0$$

$$(M3) \Box (a^{+}) = (\Box a)^{+}$$

$$(M4) \Box (a + \lambda) = \Box a + \Box \lambda - \Box 0$$

$$(M5) \Box (\lambda a) = (\Box \lambda) (\Box a) \text{ provided } \lambda \ge 0$$

where $a^+ = a \lor 0$.

A modal operator on a **b** $a\ell$ -algebra A is a unary function $\Box : A \to A$ satisfying for any $a, b \in A$ and $\lambda \in \mathbb{R}$: (if $\Box 0 = 0$)

$$(M1) \Box (a \land b) = \Box a \land \Box b$$

$$(M2') \Box \lambda = \lambda$$

$$(M3) \Box (a^+) = (\Box a)^+$$

$$(M4') \Box (a + \lambda) = \Box a + \lambda$$

$$(M5') \Box (\lambda a) = \lambda \Box a \text{ provided } \lambda \ge 0$$

where $a^+ = a \lor 0$.

A modal operator on a **b** $a\ell$ -algebra A is a unary function $\Box : A \to A$ satisfying for any $a, b \in A$ and $\lambda \in \mathbb{R}$: (if $\Box 0 = 0$)

 $(\mathsf{M1}) \ \Box(a \land b) = \Box a \land \Box b$

 $\begin{array}{l} (M3) \ \Box(a^+) = (\Box a)^+ \\ (M4') \ \Box(a + \lambda) = \Box a + \lambda \\ (M5') \ \Box(\lambda a) = \lambda \Box a \quad \text{provided } \lambda \ge 0 \end{array}$

where $a^+ = a \lor 0$.

Given a modal operator \Box on a **ba** ℓ -algebra A, we can define R_{\Box} on Y_A by

Given a modal operator \Box on a **ba** ℓ -algebra A, we can define R_{\Box} on Y_A by

$$xR_{\Box}y$$
 iff for all $a \ge 0$ ($a \in y \Rightarrow \Box a \in x$)

Given a modal operator \Box on a **ba** ℓ -algebra A, we can define R_{\Box} on Y_A by

$$xR_{\Box}y$$
 iff for all $a \ge 0$ ($a \in y \Rightarrow \Box a \in x$)

We proved that R_{\Box} is a continuous relation on Y_A . This is technically rather challenging, and requires a careful study of positive parts of ℓ -ideals.

Kripke frames are sets together with a relation.

Kripke frames are sets together with a relation.

A Kripke frame is called a compact Hausdorff frame if it is endowed with a compact Hausdorff topology making its relation continuous.

Kripke frames are sets together with a relation.

A Kripke frame is called a compact Hausdorff frame if it is endowed with a compact Hausdorff topology making its relation continuous.

Modal $ba\ell$ -algebras are $ba\ell$ -algebras together with a modal operator.

Kripke frames are sets together with a relation.

A Kripke frame is called a compact Hausdorff frame if it is endowed with a compact Hausdorff topology making its relation continuous.

Modal bal-algebras are bal-algebras together with a modal operator.

Theorem

*muba*ℓ *is dually equivalent to* KHF.

Stone spaces are compact Hausdorff spaces with a basis of clopens.

Theorem (Esakia-Goldblatt duality)

DF is dually equivalent to ma.

Theorem (Esakia-Goldblatt duality)

DF is dually equivalent to ma.

A $ba\ell$ -algebra is called clean if every element is the sum of an idempotent and a unit.

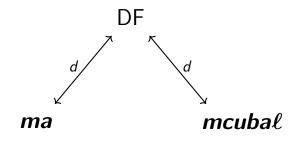
Theorem (Esakia-Goldblatt duality)

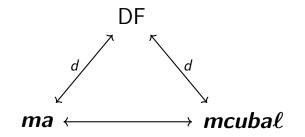
DF is dually equivalent to ma.

A $ba\ell$ -algebra is called clean if every element is the sum of an idempotent and a unit.

Theorem

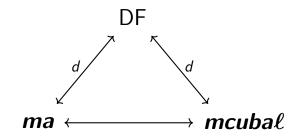
DF is dually equivalent to $mcuba\ell$.





Theorem

ma is equivalent to $mcuba\ell$.



Theorem

ma is equivalent to $mcuba\ell$.

This provides a new prospective on Esakia-Goldblatt duality.

seriality	$\Box 0 = 0$
reflexivity	$\Box a \leq a$
transitivity	$\Box a \leq \Box (\Box a (1 - \Box 0) + a \Box 0)$
symmetry	$\Diamond \Box a(1 - \Box 0) \leq a(1 - \Box 0)$

If $\Box 0 = 0$	
reflexivity	\Box a \leq a
transitivity	□a≤□□a
symmetry	$\Diamond \Box a \leq a$

Thanks for your attention!