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Abelian `-groups and vector lattices



Abelian `-groups and vector lattices

Definition

• An abelian `-group is an abelian group A equipped with a
lattice order such that a ≤ b implies a + c ≤ b + c for every
a, b, c ∈ A.

• A vector lattice is an abelian `-group V equipped with a
structure of R-vector space such that 0 ≤ r and 0 ≤ v imply
rv ≥ 0 for each r ∈ R and v ∈ V .

Abelian `-groups and vector lattices form varieties.
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`-ideals

Congruences in abelian `-groups and vector lattices correspond to
`-ideals.
Definition

• An `-ideal in an abelian `-group is a subgroup I that is
convex, i.e. |a| ≤ |b| and b ∈ I imply a ∈ I.

• An `-ideal in a vector lattice is a vector subspace that is
convex.

Definition

• A proper `-ideal is called maximal if it is maximal wrt
inclusion.

• A nontrivial abelian `-group/vector lattice A is simple if {0}
and A are the only `-ideals of A.
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Archimedeanity

Definition
An abelian `-group/vector lattice is semisimple if the intersection
of all its maximal `-ideals is {0}.

It is archimedean if na ≤ b for every n ∈ N implies a ≤ 0.

Semisimple ⇒ archimedean
Archimedean ⇒ semisimple (if finitely generated)

• A/I is simple iff I is maximal.
• A/I is semisimple iff I is intersection of maximal `-ideals.
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Baker-Beynon duality



Piecewise linear functions

Definition
A continuous function f : Rκ → R is piecewise linear if there
exist g1, . . . , gn linear homogeneous polynomials in the variables
(xα)α<κ such that for each x ∈ Rκ we have f (x) = gi (x) for
some i = 1, . . . , n.
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Piecewise linear functions

• The set PWLR(Rκ) of piecewise linear functions on Rκ is a
vector lattice with pointwise operations.

• The set PWLZ(Rκ) of piecewise linear functions on Rκ such
that g1, . . . , gn have integer coefficients is an abelian `-group
with pointwise operations.

Theorem

• PWLR(Rκ) is iso to the free vector lattice on κ generators.
• PWLZ(Rκ) is iso to the free abelian `-group on κ generators.
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Piecewise linear functions

If X ⊆ Rκ, we denote by PWLR(X ) and PWLZ(X ) the sets of
piecewise linear maps restricted to X .

Definition
A subset of Rκ is a cone if it is closed under multiplication by
nonnegative scalars.

Theorem (Baker 1968)

• Every κ-generated semisimple vector lattice is isomorphic to
PWLR(C) where C is a cone that is closed in Rκ.

• Every κ-generated semisimple abelian `-group is isomorphic to
PWLZ(C) where C is a cone that is closed in Rκ.
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Baker-Beynon duality

Theorem (Beynon 1974)

• The category of semisimple vector lattices is dually equivalent
to the category of closed cones in Rκ and piecewise linear
maps with real coefficients.

• The category of semisimple abelian `-groups is dually
equivalent to the category of closed cones in Rκ and piecewise
linear maps with integer coefficients.
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Baker-Beynon duality

Theorem (Beynon 1974)

• The category of finitely generated archimedean vector lattices
is dually equivalent to the category of closed cones in Rn for
n ∈ N and piecewise linear maps with real coefficients.

• The category of finitely generated archimedean abelian
`-groups is dually equivalent to the category of closed cones in
Rn for n ∈ N and piecewise linear maps with integer
coefficients.

7 / 22



General affine duality approach



Basic Galois connection

Let V be the variety of abelian `-groups or the variety of vector
lattices. Let A ∈ V , κ a cardinal, and F κ be the free algebra in V
over κ generators.

For any T ⊆ F κ and S ⊆ Aκ, we define the following operators.

VA(T ) ={x ∈ Aκ | t(x) = 0 for all t ∈ T}
IA(S) ={t ∈ F κ | t(x) = 0 for all x ∈ S}.

IA(S) is always an `-ideal.

Basic Galois connection

T ⊆ IA (S) iff S ⊆ VA (T ) .
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Fixpoints of the basic Galois connection

Algebraic Nullstellensatz
(Caramello, Marra, and Spada 2021)

• Let I be an `-ideal of F κ. We have I = IA(x) for some
x ∈ Aκ iff F κ /I embeds into A.

• IA(S) = ⋂
x∈S IA(x).

Definition
The subsets VA(I) = {x ∈ Aκ | t(x) = 0 for all t ∈ I} are the
closed subsets of a topology on Aκ called the Zariski topology.

The fixpoints of the Galois connection are:
• the intersections of ideals I of F κ such that F κ /I embeds

into A,
• the Zariski closed subsets of Aκ.
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Duality

Theorem (Caramello, Marra, and Spada 2021)
The Galois connection induces a dual equivalence between
• the category of algebras of V that are subdirect products of

subalgebras of A, and

• the category of Zariski closed subsets C of Aκ where κ ranges
over all the cardinal numbers.

F κ /I −→ VA(I)

F κ / IA(C) ←− C
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Applying the general affine duality approach with A = R

Theorem
An abelian `-group embeds into R iff it is simple or trivial.
Moreover, every simple vector lattice is isomorphic to R.

• Every semisimple abelian `-group/vector lattice is subdirect
product of subalgebras of R.

• The Zariski closed subsets of Rκ are the closed cones.
• F κ / IR(C) ∼= PWLR(C) (vector lattices)

F κ / IR(C) ∼= PWLZ(C) (abelian `-groups)

Thus, this approach yields Baker-Beynon duality.

11 / 22



Applying the general affine duality approach with A = R

Theorem
An abelian `-group embeds into R iff it is simple or trivial.
Moreover, every simple vector lattice is isomorphic to R.

• Every semisimple abelian `-group/vector lattice is subdirect
product of subalgebras of R.

• The Zariski closed subsets of Rκ are the closed cones.
• F κ / IR(C) ∼= PWLR(C) (vector lattices)

F κ / IR(C) ∼= PWLZ(C) (abelian `-groups)

Thus, this approach yields Baker-Beynon duality.

11 / 22



Applying the general affine duality approach with A = R

Theorem
An abelian `-group embeds into R iff it is simple or trivial.
Moreover, every simple vector lattice is isomorphic to R.

• Every semisimple abelian `-group/vector lattice is subdirect
product of subalgebras of R.

• The Zariski closed subsets of Rκ are the closed cones.

• F κ / IR(C) ∼= PWLR(C) (vector lattices)
F κ / IR(C) ∼= PWLZ(C) (abelian `-groups)

Thus, this approach yields Baker-Beynon duality.

11 / 22



Applying the general affine duality approach with A = R

Theorem
An abelian `-group embeds into R iff it is simple or trivial.
Moreover, every simple vector lattice is isomorphic to R.

• Every semisimple abelian `-group/vector lattice is subdirect
product of subalgebras of R.

• The Zariski closed subsets of Rκ are the closed cones.
• F κ / IR(C) ∼= PWLR(C) (vector lattices)

F κ / IR(C) ∼= PWLZ(C) (abelian `-groups)

Thus, this approach yields Baker-Beynon duality.

11 / 22



Applying the general affine duality approach with A = R

Theorem
An abelian `-group embeds into R iff it is simple or trivial.
Moreover, every simple vector lattice is isomorphic to R.

• Every semisimple abelian `-group/vector lattice is subdirect
product of subalgebras of R.

• The Zariski closed subsets of Rκ are the closed cones.
• F κ / IR(C) ∼= PWLR(C) (vector lattices)

F κ / IR(C) ∼= PWLZ(C) (abelian `-groups)

Thus, this approach yields Baker-Beynon duality.

11 / 22



Beyond Baker-Beynon duality



Definition
An `-ideal I is prime if a ∧ b ∈ I implies a ∈ I or b ∈ I.

• A/I is linearly ordered iff I is prime.
• Every `-ideal is intersection of prime `-ideals.
• Every abelian `-group/vector lattice is subdirect product of

linearly ordered ones.

To apply the general affine duality approach we need A such that
every linearly ordered abelian `-group/vector lattice embeds into A.

This is not possible for cardinality reasons. However, such an A
exists if we impose a bound on the cardinality/number of
generators.
Theorem
Let γ be a cardinal. There exists an ultrapower U of R such that
every κ-generated linearly ordered abelian `-group/vector lattice
with κ ≤ γ embeds into U .
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Applying the general affine duality approach with A = U

If κ ≤ γ, then every κ-generated abelian `-group/vector lattice is
subdirect product of subalgebras of U .

Theorem (C., Lapenta, and Spada)
Let γ be a cardinal. There exists an ultrapower U of R such that:
• The category of κ-generated vector lattices for some κ ≤ γ is

dually equivalent to the category of Zariski closed subsets of
Uκ for some κ ≤ γ.

• The category of κ-generated abelian `-groups for some κ ≤ γ
is dually equivalent to the category of Zariski closed subsets of
Uκ for some κ ≤ γ.

The Zariski topology on Uκ depends on whether we work with
abelian `-groups or vector lattices.
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Enlargements of piecewise linear functions

Every piecewise linear function f : R→ R can be extended to a
function ∗f : U → U by setting ∗f ([(ri )i∈I ]) = [(f (ri ))i∈I ].

Similarly, we can extend every piecewise linear f : Rκ → R to
∗f : Uκ → U which is called the enlargement of f .

We define:
∗PWLR(Uκ) = {∗f | f ∈ PWLR(Rκ)},
∗PWLZ(Uκ) = {∗f | f ∈ PWLZ(Rκ)}.

If X ⊆ Uκ, we can consider ∗PWLR(X ) and ∗PWLZ(X ).

Proposition
Let C be a Zariski closed subset of Uκ.
• F κ / IU (C) ∼= ∗PWLR(C) (vector lattices).
• F κ / IU (C) ∼= ∗PWLZ(C) (abelian `-groups).
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The Zariski topology on Un



Irreducible closed subsets

We want to understand what these Zariski topologies look like in
the finite-dimensional case.

Definition
A closed subset of a topological space is said to be irreducible if
it is not the union of two proper closed subsets.

Irreducible closed in Un are exactly the closure of points. They are
the subsets VU (I) with I prime or I = F n.

The irreducible Zariski-closed subsets of Rn are the semilines
starting from the origin (VR(I) with I maximal) and the origin
(VR(I) with I = F n).
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Indices and irreducible closed

Orthogonal decomposition theorem (Goze 1995)
If x ∈ Un, then x can be written in a unique way as
α1v1 + · · ·+ αkvk with v1, . . . , vk orthonormal vectors of Rn and
0 < α1, . . . , αk ∈ U such that αi+1/αi is infinitesimal.

Thus, we can associate to each x ∈ Un the sequence
v = (v1, . . . , vk) of orthonormal vectors.
We call such sequences indices.

Let Cone(v) be the set of points of Un whose index is a truncation
of v.
Theorem (C., Lapenta, Spada)
In the Zariski topology of Un relative to vector lattices each
irreducible closed of Un is Cone(v) for some index v.
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Indices and cones

Every subset X ⊆ Rn can be associated with a subset ∗X of Un

called the enlargement of X . Every predicate P ⊆ Rn and function
f : Rn → R can be enlarged to ∗P ⊆ Un and ∗f : Un → U .

Transfer principle ( Loś Theorem)
Let ϕ be a first order formula and ∗ϕ the formula obtained by
replacing every predicate symbol P and every function symbol f
with ∗P and ∗f . Then ϕ is true in R iff ∗ϕ is true in U .

If v is an index, we say that a closed cone of Rn is a v-cone if there
exist real numbers r2, . . . , rk > 0 such that the cone is generated
by {v1, v1 + r2v2, . . . , v1 + r2v2 + · · ·+ rkvk}.

Proposition
Cone(v) is the intersection of the enlargements of all the v-cones.
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v = ((1, 0), (0, 1)).
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Primes and indices

Theorem (C., Lapenta, and Spada)
If f ∈ PWLR(Rn), then ∗f vanishes on Cone(v) iff f vanishes on
some v-cone.

As a corollary, we obtain the description of prime `-ideals in finitely
generated vector lattices due to Panti.
Theorem (Panti 1999)
Each prime `-ideal of the vector lattice F n is of the form
{f ∈ PWLR(Rn) | f vanishes on a v-cone} for some index v.

Fix a positive infinitesimal ε ∈ U . If I is the prime `-ideal of the
vector lattice F n associated with the index v = (v1, . . . , vk), then
VU (I) = cl{v1 + εv2 + · · ·+ εk−1vk}.

This allows to embed the spectrum of a finitely generated vector
lattice V into its dual cone so that V ∼= ∗PWLR(Spec(V )).
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Abelian `-groups and Z-reduced indices

Definition
If w ∈ Rn, let 〈w〉 be the smallest subspace containing w that
admits a basis in Zn.

An index v = (v1, . . . , vk) is Z-reduced if 〈vi〉 and 〈vj〉 are
orthogonal for each i 6= j .

Using a sort of Gram-Schmidt process, we can associate to each
index v a unique Z-reduced index red(v).
Theorem (C., Lapenta, and Spada)
In the Zariski topology of Un relative to abelian `-groups each
irreducible closed of Un is of the form⋃

{Cone(w) | red(w) = v}.

for some Z-reduced index v.
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MV-algebras and Riesz MV-algebras

Theorem (C., Lapenta, and Spada)
Let γ be a cardinal. There exists an ultrapower U of [0, 1] such
that:
• The category of κ-generated MV-algebras for some κ ≤ γ is

dually equivalent to the category of Zariski closed subsets of
Uκ for some κ ≤ γ.

• The category of κ-generated Riesz MV-algebras for some
κ ≤ γ is dually equivalent to the category of Zariski closed
subsets of Uκ for some κ ≤ γ.

The irreducible closed in Un correspond to “infinitesimal simplices”.

This is an affine version of the dualities for abelian `-groups and
vector lattices.
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THANK YOU!
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