Dualities for abelian ℓ-groups and vector lattices beyond archimedeanity

Luca Carai, University of Salerno
joint work with S. Lapenta and L. Spada

Ordered Algebras and Logic, Les Diablerets, Switzerland April 2, 2022

Abelian ℓ-groups and vector lattices

Abelian ℓ-groups and vector lattices

Definition

- An abelian ℓ-group is an abelian group A equipped with a lattice order such that $a \leq b$ implies $a+c \leq b+c$ for every $a, b, c \in A$.

Abelian ℓ-groups and vector lattices

Definition

- An abelian ℓ-group is an abelian group A equipped with a lattice order such that $a \leq b$ implies $a+c \leq b+c$ for every $a, b, c \in A$.
- A vector lattice is an abelian ℓ-group V equipped with a structure of \mathbb{R}-vector space such that $0 \leq r$ and $0 \leq v$ imply $r v \geq 0$ for each $r \in \mathbb{R}$ and $v \in V$.

Abelian ℓ-groups and vector lattices

Definition

- An abelian ℓ-group is an abelian group A equipped with a lattice order such that $a \leq b$ implies $a+c \leq b+c$ for every $a, b, c \in A$.
- A vector lattice is an abelian ℓ-group V equipped with a structure of \mathbb{R}-vector space such that $0 \leq r$ and $0 \leq v$ imply $r v \geq 0$ for each $r \in \mathbb{R}$ and $v \in V$.

Abelian ℓ-groups and vector lattices form varieties.

ℓ-ideals

Congruences in abelian ℓ-groups and vector lattices correspond to ℓ-ideals.

Definition

- An ℓ-ideal in an abelian ℓ-group is a subgroup $/$ that is convex, i.e. $|a| \leq|b|$ and $b \in I$ imply $a \in I$.
- An ℓ-ideal in a vector lattice is a vector subspace that is convex.

ℓ-ideals

Congruences in abelian ℓ-groups and vector lattices correspond to ℓ-ideals.

Definition

- An ℓ-ideal in an abelian ℓ-group is a subgroup $/$ that is convex, i.e. $|a| \leq|b|$ and $b \in I$ imply $a \in I$.
- An ℓ-ideal in a vector lattice is a vector subspace that is convex.

Definition

- A proper ℓ-ideal is called maximal if it is maximal wrt inclusion.
- A nontrivial abelian ℓ-group/vector lattice A is simple if $\{0\}$ and A are the only ℓ-ideals of A.

Archimedeanity

Definition

An abelian ℓ-group/vector lattice is semisimple if the intersection of all its maximal ℓ-ideals is $\{0\}$.

It is archimedean if $n a \leq b$ for every $n \in \mathbb{N}$ implies $a \leq 0$.

Archimedeanity

Definition

An abelian ℓ-group/vector lattice is semisimple if the intersection of all its maximal ℓ-ideals is $\{0\}$.

It is archimedean if $n a \leq b$ for every $n \in \mathbb{N}$ implies $a \leq 0$.
Semisimple \Rightarrow archimedean

Archimedeanity

Definition

An abelian ℓ-group/vector lattice is semisimple if the intersection of all its maximal ℓ-ideals is $\{0\}$.

It is archimedean if $n a \leq b$ for every $n \in \mathbb{N}$ implies $a \leq 0$.

Semisimple \Rightarrow archimedean
Archimedean \Rightarrow semisimple (if finitely generated)

Archimedeanity

Definition

An abelian ℓ-group/vector lattice is semisimple if the intersection of all its maximal ℓ-ideals is $\{0\}$.

It is archimedean if $n a \leq b$ for every $n \in \mathbb{N}$ implies $a \leq 0$.
Semisimple \Rightarrow archimedean
Archimedean \Rightarrow semisimple (if finitely generated)

- A / I is simple iff I is maximal.
- A / I is semisimple iff I is intersection of maximal ℓ-ideals.

Baker-Beynon duality

Piecewise linear functions

Definition

A continuous function $f: \mathbb{R}^{\kappa} \rightarrow \mathbb{R}$ is piecewise linear if there exist g_{1}, \ldots, g_{n} linear homogeneous polynomials in the variables $\left(x_{\alpha}\right)_{\alpha<\kappa}$ such that for each $x \in \mathbb{R}^{\kappa}$ we have $f(x)=g_{i}(x)$ for some $i=1, \ldots, n$.

Piecewise linear functions

Definition

A continuous function $f: \mathbb{R}^{\kappa} \rightarrow \mathbb{R}$ is piecewise linear if there exist g_{1}, \ldots, g_{n} linear homogeneous polynomials in the variables $\left(x_{\alpha}\right)_{\alpha<\kappa}$ such that for each $x \in \mathbb{R}^{\kappa}$ we have $f(x)=g_{i}(x)$ for some $i=1, \ldots, n$.

Piecewise linear functions

Definition

A continuous function $f: \mathbb{R}^{\kappa} \rightarrow \mathbb{R}$ is piecewise linear if there exist g_{1}, \ldots, g_{n} linear homogeneous polynomials in the variables $\left(x_{\alpha}\right)_{\alpha<\kappa}$ such that for each $x \in \mathbb{R}^{\kappa}$ we have $f(x)=g_{i}(x)$ for some $i=1, \ldots, n$.

Piecewise linear functions

- The set $P W L_{\mathbb{R}}\left(\mathbb{R}^{\kappa}\right)$ of piecewise linear functions on \mathbb{R}^{κ} is a vector lattice with pointwise operations.

Piecewise linear functions

- The set $P W L_{\mathbb{R}}\left(\mathbb{R}^{\kappa}\right)$ of piecewise linear functions on \mathbb{R}^{κ} is a vector lattice with pointwise operations.
- The set $\mathrm{PWL}_{\mathbb{Z}}\left(\mathbb{R}^{\kappa}\right)$ of piecewise linear functions on \mathbb{R}^{κ} such that g_{1}, \ldots, g_{n} have integer coefficients is an abelian ℓ-group with pointwise operations.

Piecewise linear functions

- The set $\mathrm{PWL}_{\mathbb{R}}\left(\mathbb{R}^{\kappa}\right)$ of piecewise linear functions on \mathbb{R}^{κ} is a vector lattice with pointwise operations.
- The set $\mathrm{PWL}_{\mathbb{Z}}\left(\mathbb{R}^{\kappa}\right)$ of piecewise linear functions on \mathbb{R}^{κ} such that g_{1}, \ldots, g_{n} have integer coefficients is an abelian ℓ-group with pointwise operations.

Theorem

- $\mathrm{PWL}_{\mathbb{R}}\left(\mathbb{R}^{\kappa}\right)$ is iso to the free vector lattice on κ generators.
- $\mathrm{PWL}_{\mathbb{Z}}\left(\mathbb{R}^{\kappa}\right)$ is iso to the free abelian ℓ-group on κ generators.

Piecewise linear functions

If $X \subseteq \mathbb{R}^{\kappa}$, we denote by $\mathrm{PWL}_{\mathbb{R}}(X)$ and $\mathrm{PWL}_{\mathbb{Z}}(X)$ the sets of piecewise linear maps restricted to X.

Piecewise linear functions

If $X \subseteq \mathbb{R}^{\kappa}$, we denote by $\mathrm{PWL}_{\mathbb{R}}(X)$ and $\mathrm{PWL}_{\mathbb{Z}}(X)$ the sets of piecewise linear maps restricted to X.

Definition

A subset of \mathbb{R}^{κ} is a cone if it is closed under multiplication by nonnegative scalars.

Piecewise linear functions

If $X \subseteq \mathbb{R}^{\kappa}$, we denote by $\mathrm{PWL}_{\mathbb{R}}(X)$ and $\mathrm{PWL}_{\mathbb{Z}}(X)$ the sets of piecewise linear maps restricted to X.

Definition

A subset of \mathbb{R}^{κ} is a cone if it is closed under multiplication by nonnegative scalars.

Theorem (Baker 1968)

- Every κ-generated semisimple vector lattice is isomorphic to $\mathrm{PWL}_{\mathbb{R}}(C)$ where C is a cone that is closed in \mathbb{R}^{κ}.
- Every κ-generated semisimple abelian ℓ-group is isomorphic to $\mathrm{PWL}_{\mathbb{Z}}(C)$ where C is a cone that is closed in \mathbb{R}^{κ}.

Baker-Beynon duality

Theorem (Beynon 1974)

- The category of semisimple vector lattices is dually equivalent to the category of closed cones in \mathbb{R}^{κ} and piecewise linear maps with real coefficients.

Baker-Beynon duality

Theorem (Beynon 1974)

- The category of semisimple vector lattices is dually equivalent to the category of closed cones in \mathbb{R}^{κ} and piecewise linear maps with real coefficients.
- The category of semisimple abelian ℓ-groups is dually equivalent to the category of closed cones in \mathbb{R}^{κ} and piecewise linear maps with integer coefficients.

Baker-Beynon duality

Theorem (Beynon 1974)

- The category of finitely generated archimedean vector lattices is dually equivalent to the category of closed cones in \mathbb{R}^{n} for $n \in \mathbb{N}$ and piecewise linear maps with real coefficients.
- The category of finitely generated archimedean abelian ℓ-groups is dually equivalent to the category of closed cones in \mathbb{R}^{n} for $n \in \mathbb{N}$ and piecewise linear maps with integer coefficients.

General affine duality approach

Basic Galois connection

Let V be the variety of abelian ℓ-groups or the variety of vector lattices. Let $A \in V, \kappa$ a cardinal, and \mathscr{F}_{κ} be the free algebra in V over κ generators.

Basic Galois connection

Let V be the variety of abelian ℓ-groups or the variety of vector lattices. Let $A \in V, \kappa$ a cardinal, and \mathscr{F}_{κ} be the free algebra in V over κ generators.

For any $T \subseteq \mathscr{F}_{\kappa}$ and $S \subseteq A^{\kappa}$, we define the following operators.

$$
\begin{aligned}
\mathbb{V}_{A}(T) & =\left\{x \in A^{\kappa} \mid t(x)=0 \text { for all } t \in T\right\} \\
\mathbb{I}_{A}(S) & =\left\{t \in \mathscr{F}_{\kappa} \mid t(x)=0 \text { for all } x \in S\right\} .
\end{aligned}
$$

$\mathbb{I}_{A}(S)$ is always an ℓ-ideal.

Basic Galois connection

Let V be the variety of abelian ℓ-groups or the variety of vector lattices. Let $A \in V, \kappa$ a cardinal, and \mathscr{F}_{κ} be the free algebra in V over κ generators.

For any $T \subseteq \mathscr{F}_{\kappa}$ and $S \subseteq A^{\kappa}$, we define the following operators.

$$
\begin{aligned}
\mathbb{V}_{A}(T) & =\left\{x \in A^{\kappa} \mid t(x)=0 \text { for all } t \in T\right\} \\
\mathbb{I}_{A}(S) & =\left\{t \in \mathscr{F}_{\kappa} \mid t(x)=0 \text { for all } x \in S\right\} .
\end{aligned}
$$

$\mathbb{I}_{A}(S)$ is always an ℓ-ideal.
Basic Galois connection

$$
T \subseteq \mathbb{I}_{A}(S) \quad \text { iff } \quad S \subseteq \mathbb{V}_{A}(T)
$$

Fixpoints of the basic Galois connection

Algebraic Nullstellensatz

(Caramello, Marra, and Spada 2021)

- Let I be an ℓ-ideal of \mathscr{F}_{κ}. We have $I=\mathbb{I}_{A}(x)$ for some $x \in A^{\kappa}$ iff \mathscr{F}_{κ} / I embeds into A.

Fixpoints of the basic Galois connection

Algebraic Nullstellensatz

(Caramello, Marra, and Spada 2021)

- Let I be an ℓ-ideal of \mathscr{F}_{κ}. We have $I=\mathbb{I}_{A}(x)$ for some $x \in A^{\kappa}$ iff \mathscr{F}_{κ} / I embeds into A.
- $\mathbb{I}_{A}(S)=\bigcap_{x \in S} \mathbb{I}_{A}(x)$.

Fixpoints of the basic Galois connection

Algebraic Nullstellensatz

(Caramello, Marra, and Spada 2021)

- Let I be an ℓ-ideal of \mathscr{F}_{κ}. We have $I=\mathbb{I}_{A}(x)$ for some $x \in A^{\kappa}$ iff \mathscr{F}_{κ} / I embeds into A.
- $\mathbb{I}_{A}(S)=\bigcap_{x \in S} \mathbb{I}_{A}(x)$.

Definition

The subsets $\mathbb{V}_{A}(I)=\left\{x \in A^{\kappa} \mid t(x)=0\right.$ for all $\left.t \in I\right\}$ are the closed subsets of a topology on A^{κ} called the Zariski topology.

Fixpoints of the basic Galois connection

Algebraic Nullstellensatz

(Caramello, Marra, and Spada 2021)

- Let I be an ℓ-ideal of \mathscr{F}_{κ}. We have $I=\mathbb{I}_{A}(x)$ for some $x \in A^{\kappa}$ iff \mathscr{F}_{κ} / I embeds into A.
- $\mathbb{I}_{A}(S)=\bigcap_{x \in S} \mathbb{I}_{A}(x)$.

Definition

The subsets $\mathbb{V}_{A}(I)=\left\{x \in A^{\kappa} \mid t(x)=0\right.$ for all $\left.t \in I\right\}$ are the closed subsets of a topology on A^{κ} called the Zariski topology.

The fixpoints of the Galois connection are:

- the intersections of ideals $/$ of \mathscr{F}_{κ} such that \mathscr{F}_{κ} / I embeds into A,
- the Zariski closed subsets of A^{κ}.

Duality

Theorem (Caramello, Marra, and Spada 2021)

The Galois connection induces a dual equivalence between

- the category of algebras of V that are subdirect products of subalgebras of A, and

Duality

Theorem (Caramello, Marra, and Spada 2021)

The Galois connection induces a dual equivalence between

- the category of algebras of V that are subdirect products of subalgebras of A, and
- the category of Zariski closed subsets C of A^{κ} where κ ranges over all the cardinal numbers.

Duality

Theorem (Caramello, Marra, and Spada 2021)

The Galois connection induces a dual equivalence between

- the category of algebras of V that are subdirect products of subalgebras of A, and
- the category of Zariski closed subsets C of A^{κ} where κ ranges over all the cardinal numbers.

$$
\begin{aligned}
\mathscr{F}_{\kappa} / I & \longrightarrow \mathbb{V}_{A}(I) \\
\mathscr{F}_{\kappa} / \mathbb{I}_{A}(C) & \longleftarrow C
\end{aligned}
$$

Applying the general affine duality approach with $A=\mathbb{R}$

Theorem

An abelian ℓ-group embeds into \mathbb{R} iff it is simple or trivial. Moreover, every simple vector lattice is isomorphic to \mathbb{R}.

Applying the general affine duality approach with $A=\mathbb{R}$

Theorem

An abelian ℓ-group embeds into \mathbb{R} iff it is simple or trivial. Moreover, every simple vector lattice is isomorphic to \mathbb{R}.

- Every semisimple abelian ℓ-group/vector lattice is subdirect product of subalgebras of \mathbb{R}.

Applying the general affine duality approach with $A=\mathbb{R}$

Theorem

An abelian ℓ-group embeds into \mathbb{R} iff it is simple or trivial. Moreover, every simple vector lattice is isomorphic to \mathbb{R}.

- Every semisimple abelian ℓ-group/vector lattice is subdirect product of subalgebras of \mathbb{R}.
- The Zariski closed subsets of \mathbb{R}^{κ} are the closed cones.

Applying the general affine duality approach with $A=\mathbb{R}$

Theorem

An abelian ℓ-group embeds into \mathbb{R} iff it is simple or trivial. Moreover, every simple vector lattice is isomorphic to \mathbb{R}.

- Every semisimple abelian ℓ-group/vector lattice is subdirect product of subalgebras of \mathbb{R}.
- The Zariski closed subsets of \mathbb{R}^{κ} are the closed cones.
- $\mathscr{F}_{\kappa} / \mathbb{I}_{\mathbb{R}}(C) \cong \mathrm{PWL}_{\mathbb{R}}(C)$ (vector lattices)
$\mathscr{F}_{\kappa} / \mathbb{I}_{\mathbb{R}}(C) \cong \mathrm{PWL}_{\mathbb{Z}}(C)$ (abelian ℓ-groups)

Applying the general affine duality approach with $A=\mathbb{R}$

Theorem

An abelian ℓ-group embeds into \mathbb{R} iff it is simple or trivial.
Moreover, every simple vector lattice is isomorphic to \mathbb{R}.

- Every semisimple abelian ℓ-group/vector lattice is subdirect product of subalgebras of \mathbb{R}.
- The Zariski closed subsets of \mathbb{R}^{κ} are the closed cones.
- $\mathscr{F}_{\kappa} / \mathbb{I}_{\mathbb{R}}(C) \cong \mathrm{PWL}_{\mathbb{R}}(C)$ (vector lattices)

$$
\mathscr{F}_{\kappa} / \mathbb{I}_{\mathbb{R}}(C) \cong \mathrm{PWL}_{\mathbb{Z}}(C) \text { (abelian } \ell \text {-groups) }
$$

Thus, this approach yields Baker-Beynon duality.

Beyond Baker-Beynon duality

Definition

An ℓ-ideal I is prime if $a \wedge b \in I$ implies $a \in I$ or $b \in I$.

Definition

An ℓ-ideal I is prime if $a \wedge b \in I$ implies $a \in I$ or $b \in I$.

- A / I is linearly ordered iff I is prime.
- Every ℓ-ideal is intersection of prime ℓ-ideals.
- Every abelian ℓ-group/vector lattice is subdirect product of linearly ordered ones.

Definition

An ℓ-ideal I is prime if $a \wedge b \in I$ implies $a \in I$ or $b \in I$.

- A / I is linearly ordered iff I is prime.
- Every ℓ-ideal is intersection of prime ℓ-ideals.
- Every abelian ℓ-group/vector lattice is subdirect product of linearly ordered ones.

To apply the general affine duality approach we need A such that every linearly ordered abelian ℓ-group/vector lattice embeds into A.

Definition

An ℓ-ideal I is prime if $a \wedge b \in I$ implies $a \in I$ or $b \in I$.

- A / I is linearly ordered iff I is prime.
- Every ℓ-ideal is intersection of prime ℓ-ideals.
- Every abelian ℓ-group/vector lattice is subdirect product of linearly ordered ones.

To apply the general affine duality approach we need A such that every linearly ordered abelian ℓ-group/vector lattice embeds into A.

This is not possible for cardinality reasons. However, such an A exists if we impose a bound on the cardinality/number of generators.

Definition

An ℓ-ideal I is prime if $a \wedge b \in I$ implies $a \in I$ or $b \in I$.

- A / I is linearly ordered iff I is prime.
- Every ℓ-ideal is intersection of prime ℓ-ideals.
- Every abelian ℓ-group/vector lattice is subdirect product of linearly ordered ones.

To apply the general affine duality approach we need A such that every linearly ordered abelian ℓ-group/vector lattice embeds into A.

This is not possible for cardinality reasons. However, such an A exists if we impose a bound on the cardinality/number of generators.

Theorem

Let γ be a cardinal. There exists an ultrapower \mathcal{U} of \mathbb{R} such that every κ-generated linearly ordered abelian ℓ-group/vector lattice with $\kappa \leq \gamma$ embeds into \mathcal{U}.

Applying the general affine duality approach with $A=\mathcal{U}$

If $\kappa \leq \gamma$, then every κ-generated abelian ℓ-group/vector lattice is subdirect product of subalgebras of \mathcal{U}.

Applying the general affine duality approach with $A=\mathcal{U}$

If $\kappa \leq \gamma$, then every κ-generated abelian ℓ-group/vector lattice is subdirect product of subalgebras of \mathcal{U}.

Theorem (C., Lapenta, and Spada)

Let γ be a cardinal. There exists an ultrapower \mathcal{U} of \mathbb{R} such that:

- The category of κ-generated vector lattices for some $\kappa \leq \gamma$ is dually equivalent to the category of Zariski closed subsets of \mathcal{U}^{κ} for some $\kappa \leq \gamma$.

Applying the general affine duality approach with $A=\mathcal{U}$

If $\kappa \leq \gamma$, then every κ-generated abelian ℓ-group/vector lattice is subdirect product of subalgebras of \mathcal{U}.

Theorem (C., Lapenta, and Spada)

Let γ be a cardinal. There exists an ultrapower \mathcal{U} of \mathbb{R} such that:

- The category of κ-generated vector lattices for some $\kappa \leq \gamma$ is dually equivalent to the category of Zariski closed subsets of \mathcal{U}^{κ} for some $\kappa \leq \gamma$.
- The category of κ-generated abelian ℓ-groups for some $\kappa \leq \gamma$ is dually equivalent to the category of Zariski closed subsets of \mathcal{U}^{κ} for some $\kappa \leq \gamma$.

Applying the general affine duality approach with $A=\mathcal{U}$

If $\kappa \leq \gamma$, then every κ-generated abelian ℓ-group/vector lattice is subdirect product of subalgebras of \mathcal{U}.

Theorem (C., Lapenta, and Spada)

Let γ be a cardinal. There exists an ultrapower \mathcal{U} of \mathbb{R} such that:

- The category of κ-generated vector lattices for some $\kappa \leq \gamma$ is dually equivalent to the category of Zariski closed subsets of \mathcal{U}^{κ} for some $\kappa \leq \gamma$.
- The category of κ-generated abelian ℓ-groups for some $\kappa \leq \gamma$ is dually equivalent to the category of Zariski closed subsets of \mathcal{U}^{κ} for some $\kappa \leq \gamma$.

The Zariski topology on \mathcal{U}^{κ} depends on whether we work with abelian ℓ-groups or vector lattices.

Enlargements of piecewise linear functions

Every piecewise linear function $f: \mathbb{R} \rightarrow \mathbb{R}$ can be extended to a function ${ }^{*} f: \mathcal{U} \rightarrow \mathcal{U}$ by setting ${ }^{*} f\left(\left[\left(r_{i}\right)_{i \in I}\right]\right)=\left[\left(f\left(r_{i}\right)\right)_{i \in I}\right]$.

Enlargements of piecewise linear functions

Every piecewise linear function $f: \mathbb{R} \rightarrow \mathbb{R}$ can be extended to a function ${ }^{*} f: \mathcal{U} \rightarrow \mathcal{U}$ by setting ${ }^{*} f\left(\left[\left(r_{i}\right)_{i \in I}\right]\right)=\left[\left(f\left(r_{i}\right)\right)_{i \in I}\right]$.
Similarly, we can extend every piecewise linear $f: \mathbb{R}^{\kappa} \rightarrow \mathbb{R}$ to ${ }^{*} f: \mathcal{U}^{\kappa} \rightarrow \mathcal{U}$ which is called the enlargement of f.

Enlargements of piecewise linear functions

Every piecewise linear function $f: \mathbb{R} \rightarrow \mathbb{R}$ can be extended to a function ${ }^{*} f: \mathcal{U} \rightarrow \mathcal{U}$ by setting ${ }^{*} f\left(\left[\left(r_{i}\right)_{i \in I}\right]\right)=\left[\left(f\left(r_{i}\right)\right)_{i \in I}\right]$.
Similarly, we can extend every piecewise linear $f: \mathbb{R}^{\kappa} \rightarrow \mathbb{R}$ to ${ }^{*} f: \mathcal{U}^{\kappa} \rightarrow \mathcal{U}$ which is called the enlargement of f.

We define:
${ }^{*} \mathrm{PWL}_{\mathbb{R}}\left(\mathcal{U}^{\kappa}\right)=\left\{{ }^{*} f \mid f \in \mathrm{PWL}_{\mathbb{R}}\left(\mathbb{R}^{\kappa}\right)\right\}$,
${ }^{*} \mathrm{PWL}_{\mathbb{Z}}\left(\mathcal{U}^{\kappa}\right)=\left\{{ }^{*} f \mid f \in \mathrm{PWL}_{\mathbb{Z}}\left(\mathbb{R}^{\kappa}\right)\right\}$.

Enlargements of piecewise linear functions

Every piecewise linear function $f: \mathbb{R} \rightarrow \mathbb{R}$ can be extended to a function ${ }^{*} f: \mathcal{U} \rightarrow \mathcal{U}$ by setting ${ }^{*} f\left(\left[\left(r_{i}\right)_{i \in I}\right]\right)=\left[\left(f\left(r_{i}\right)\right)_{i \in I}\right]$.
Similarly, we can extend every piecewise linear $f: \mathbb{R}^{\kappa} \rightarrow \mathbb{R}$ to ${ }^{*} f: \mathcal{U}^{\kappa} \rightarrow \mathcal{U}$ which is called the enlargement of f.

We define:
${ }^{*} \mathrm{PWL}_{\mathbb{R}}\left(\mathcal{U}^{\kappa}\right)=\left\{{ }^{*} f \mid f \in \mathrm{PWL}_{\mathbb{R}}\left(\mathbb{R}^{\kappa}\right)\right\}$,
${ }^{*} \mathrm{PWL}_{\mathbb{Z}}\left(\mathcal{U}^{\kappa}\right)=\left\{{ }^{*} f \mid f \in \mathrm{PWL}_{\mathbb{Z}}\left(\mathbb{R}^{\kappa}\right)\right\}$.
If $X \subseteq \mathcal{U}^{\kappa}$, we can consider ${ }^{*} \operatorname{PWL}_{\mathbb{R}}(X)$ and ${ }^{*} \mathrm{PWL}_{\mathbb{Z}}(X)$.

Proposition

Let C be a Zariski closed subset of \mathcal{U}^{κ}.

- $\mathscr{F}_{\kappa} / \mathbb{I}_{\mathcal{U}}(C) \cong{ }^{*} \mathrm{PWL}_{\mathbb{R}}(C)$ (vector lattices).
- $\mathscr{F}_{\kappa} / \mathbb{I}_{\mathcal{U}}(C) \cong{ }^{*} \mathrm{PWL}_{\mathbb{Z}}(C)$ (abelian ℓ-groups).

The Zariski topology on \mathcal{U}^{n}

Irreducible closed subsets

We want to understand what these Zariski topologies look like in the finite-dimensional case.

Irreducible closed subsets

We want to understand what these Zariski topologies look like in the finite-dimensional case.

Definition

A closed subset of a topological space is said to be irreducible if it is not the union of two proper closed subsets.

Irreducible closed subsets

We want to understand what these Zariski topologies look like in the finite-dimensional case.

Definition

A closed subset of a topological space is said to be irreducible if it is not the union of two proper closed subsets.

Irreducible closed in \mathcal{U}^{n} are exactly the closure of points. They are the subsets $\mathbb{V}_{\mathcal{U}}(I)$ with I prime or $I=\mathscr{F}_{n}$.

Irreducible closed subsets

We want to understand what these Zariski topologies look like in the finite-dimensional case.

Definition

A closed subset of a topological space is said to be irreducible if it is not the union of two proper closed subsets.

Irreducible closed in \mathcal{U}^{n} are exactly the closure of points. They are the subsets $\mathbb{V}_{\mathcal{U}}(I)$ with I prime or $I=\mathscr{F}_{n}$.

The irreducible Zariski-closed subsets of \mathbb{R}^{n} are the semilines starting from the origin $\left(\mathbb{V}_{\mathbb{R}}(I)\right.$ with $/$ maximal $)$ and the origin $\left(\mathbb{V}_{\mathbb{R}}(I)\right.$ with $\left.I=\mathscr{F}_{n}\right)$.

Indices and irreducible closed

Orthogonal decomposition theorem (Goze 1995)

If $x \in \mathcal{U}^{n}$, then x can be written in a unique way as
$\alpha_{1} v_{1}+\cdots+\alpha_{k} v_{k}$ with v_{1}, \ldots, v_{k} orthonormal vectors of \mathbb{R}^{n} and $0<\alpha_{1}, \ldots, \alpha_{k} \in \mathcal{U}$ such that $\alpha_{i+1} / \alpha_{i}$ is infinitesimal.

Indices and irreducible closed

Orthogonal decomposition theorem (Goze 1995)

If $x \in \mathcal{U}^{n}$, then x can be written in a unique way as
$\alpha_{1} v_{1}+\cdots+\alpha_{k} v_{k}$ with v_{1}, \ldots, v_{k} orthonormal vectors of \mathbb{R}^{n} and $0<\alpha_{1}, \ldots, \alpha_{k} \in \mathcal{U}$ such that $\alpha_{i+1} / \alpha_{i}$ is infinitesimal.

Thus, we can associate to each $x \in \mathcal{U}^{n}$ the sequence $\mathbf{v}=\left(v_{1}, \ldots, v_{k}\right)$ of orthonormal vectors.
We call such sequences indices.

Indices and irreducible closed

Orthogonal decomposition theorem (Goze 1995)

If $x \in \mathcal{U}^{n}$, then x can be written in a unique way as
$\alpha_{1} v_{1}+\cdots+\alpha_{k} v_{k}$ with v_{1}, \ldots, v_{k} orthonormal vectors of \mathbb{R}^{n} and $0<\alpha_{1}, \ldots, \alpha_{k} \in \mathcal{U}$ such that $\alpha_{i+1} / \alpha_{i}$ is infinitesimal.

Thus, we can associate to each $x \in \mathcal{U}^{n}$ the sequence $\mathbf{v}=\left(v_{1}, \ldots, v_{k}\right)$ of orthonormal vectors.
We call such sequences indices.
Let Cone(\mathbf{v}) be the set of points of \mathcal{U}^{n} whose index is a truncation of \mathbf{v}.

Indices and irreducible closed

Orthogonal decomposition theorem (Goze 1995)

If $x \in \mathcal{U}^{n}$, then x can be written in a unique way as
$\alpha_{1} v_{1}+\cdots+\alpha_{k} v_{k}$ with v_{1}, \ldots, v_{k} orthonormal vectors of \mathbb{R}^{n} and
$0<\alpha_{1}, \ldots, \alpha_{k} \in \mathcal{U}$ such that $\alpha_{i+1} / \alpha_{i}$ is infinitesimal.

Thus, we can associate to each $x \in \mathcal{U}^{n}$ the sequence
$\mathbf{v}=\left(v_{1}, \ldots, v_{k}\right)$ of orthonormal vectors.
We call such sequences indices.
Let Cone(\mathbf{v}) be the set of points of \mathcal{U}^{n} whose index is a truncation of \mathbf{v}.

Theorem (C., Lapenta, Spada)

In the Zariski topology of \mathcal{U}^{n} relative to vector lattices each irreducible closed of \mathcal{U}^{n} is Cone(v) for some index \mathbf{v}.

Indices and cones

Every subset $X \subseteq \mathbb{R}^{n}$ can be associated with a subset ${ }^{*} X$ of \mathcal{U}^{n} called the enlargement of X. Every predicate $P \subseteq \mathbb{R}^{n}$ and function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ can be enlarged to ${ }^{*} P \subseteq \mathcal{U}^{n}$ and ${ }^{*} f: \mathcal{U}^{n} \rightarrow \mathcal{U}$.

Indices and cones

Every subset $X \subseteq \mathbb{R}^{n}$ can be associated with a subset ${ }^{*} X$ of \mathcal{U}^{n} called the enlargement of X. Every predicate $P \subseteq \mathbb{R}^{n}$ and function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ can be enlarged to ${ }^{*} P \subseteq \mathcal{U}^{n}$ and ${ }^{*} f: \mathcal{U}^{n} \rightarrow \mathcal{U}$.

Transfer principle (Łoś Theorem)

Let φ be a first order formula and ${ }^{*} \varphi$ the formula obtained by replacing every predicate symbol P and every function symbol f with ${ }^{*} P$ and ${ }^{*} f$. Then φ is true in \mathbb{R} iff ${ }^{*} \varphi$ is true in \mathcal{U}.

Indices and cones

Every subset $X \subseteq \mathbb{R}^{n}$ can be associated with a subset ${ }^{*} X$ of \mathcal{U}^{n} called the enlargement of X. Every predicate $P \subseteq \mathbb{R}^{n}$ and function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ can be enlarged to ${ }^{*} P \subseteq \mathcal{U}^{n}$ and ${ }^{*} f: \mathcal{U}^{n} \rightarrow \mathcal{U}$.

Transfer principle (Łoś Theorem)

Let φ be a first order formula and ${ }^{*} \varphi$ the formula obtained by replacing every predicate symbol P and every function symbol f with ${ }^{*} P$ and ${ }^{*} f$. Then φ is true in \mathbb{R} iff ${ }^{*} \varphi$ is true in \mathcal{U}.

If \mathbf{v} is an index, we say that a closed cone of \mathbb{R}^{n} is a \mathbf{v}-cone if there exist real numbers $r_{2}, \ldots, r_{k}>0$ such that the cone is generated by $\left\{v_{1}, v_{1}+r_{2} v_{2}, \ldots, v_{1}+r_{2} v_{2}+\cdots+r_{k} v_{k}\right\}$.

Indices and cones

Every subset $X \subseteq \mathbb{R}^{n}$ can be associated with a subset ${ }^{*} X$ of \mathcal{U}^{n} called the enlargement of X. Every predicate $P \subseteq \mathbb{R}^{n}$ and function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ can be enlarged to ${ }^{*} P \subseteq \mathcal{U}^{n}$ and ${ }^{*} f: \mathcal{U}^{n} \rightarrow \mathcal{U}$.

Transfer principle (Łoś Theorem)

Let φ be a first order formula and ${ }^{*} \varphi$ the formula obtained by replacing every predicate symbol P and every function symbol f with ${ }^{*} P$ and ${ }^{*} f$. Then φ is true in \mathbb{R} iff ${ }^{*} \varphi$ is true in \mathcal{U}.

If \mathbf{v} is an index, we say that a closed cone of \mathbb{R}^{n} is a \mathbf{v}-cone if there exist real numbers $r_{2}, \ldots, r_{k}>0$ such that the cone is generated by $\left\{v_{1}, v_{1}+r_{2} v_{2}, \ldots, v_{1}+r_{2} v_{2}+\cdots+r_{k} v_{k}\right\}$.

Proposition

Cone(v) is the intersection of the enlargements of all the \mathbf{v}-cones.
$\mathbf{v}=((1,0),(0,1))$.

$\mathbf{v}=((1,0),(0,1))$.

$$
\mathbf{v}=((1,0),(0,1)) .
$$

$$
\mathbf{v}=((1,0),(0,1)) .
$$

$$
\mathbf{v}=((1,0),(0,1)) .
$$

Primes and indices

Theorem (C., Lapenta, and Spada) If $f \in \mathrm{PWL}_{\mathbb{R}}\left(\mathbb{R}^{n}\right)$, then ${ }^{*} f$ vanishes on Cone($\left.\mathbf{v}\right)$ iff f vanishes on some v-cone.

Primes and indices

Theorem (C., Lapenta, and Spada)

If $f \in \mathrm{PWL}_{\mathbb{R}}\left(\mathbb{R}^{n}\right)$, then ${ }^{*} f$ vanishes on Cone($\left.\mathbf{v}\right)$ iff f vanishes on some v-cone.

As a corollary, we obtain the description of prime ℓ-ideals in finitely generated vector lattices due to Panti.

Theorem (Panti 1999)

Each prime ℓ-ideal of the vector lattice \mathscr{F}_{n} is of the form $\left\{f \in \mathrm{PWL}_{\mathbb{R}}\left(\mathbb{R}^{n}\right) \mid f\right.$ vanishes on a \mathbf{v}-cone $\}$ for some index \mathbf{v}.

Primes and indices

Theorem (C., Lapenta, and Spada)

If $f \in \mathrm{PWL}_{\mathbb{R}}\left(\mathbb{R}^{n}\right)$, then ${ }^{*} f$ vanishes on Cone(\mathbf{v}) iff f vanishes on some v-cone.

As a corollary, we obtain the description of prime ℓ-ideals in finitely generated vector lattices due to Panti.

Theorem (Panti 1999)

Each prime ℓ-ideal of the vector lattice \mathscr{F}_{n} is of the form $\left\{f \in \mathrm{PWL}_{\mathbb{R}}\left(\mathbb{R}^{n}\right) \mid f\right.$ vanishes on a \mathbf{v}-cone $\}$ for some index \mathbf{v}.

Fix a positive infinitesimal $\varepsilon \in \mathcal{U}$. If I is the prime ℓ-ideal of the vector lattice \mathscr{F}_{n} associated with the index $\mathbf{v}=\left(v_{1}, \ldots, v_{k}\right)$, then $\mathbb{V}_{\mathcal{U}}(I)=\operatorname{cl}\left\{v_{1}+\varepsilon v_{2}+\cdots+\varepsilon^{k-1} v_{k}\right\}$.

Primes and indices

Theorem (C., Lapenta, and Spada)

If $f \in \mathrm{PWL}_{\mathbb{R}}\left(\mathbb{R}^{n}\right)$, then ${ }^{*} f$ vanishes on Cone(\mathbf{v}) iff f vanishes on some v-cone.

As a corollary, we obtain the description of prime ℓ-ideals in finitely generated vector lattices due to Panti.

Theorem (Panti 1999)

Each prime ℓ-ideal of the vector lattice \mathscr{F}_{n} is of the form $\left\{f \in \mathrm{PWL}_{\mathbb{R}}\left(\mathbb{R}^{n}\right) \mid f\right.$ vanishes on a v-cone $\}$ for some index \mathbf{v}.

Fix a positive infinitesimal $\varepsilon \in \mathcal{U}$. If I is the prime ℓ-ideal of the vector lattice \mathscr{F}_{n} associated with the index $\mathbf{v}=\left(v_{1}, \ldots, v_{k}\right)$, then $\mathbb{V}_{\mathcal{U}}(I)=\operatorname{cl}\left\{v_{1}+\varepsilon v_{2}+\cdots+\varepsilon^{k-1} v_{k}\right\}$.

This allows to embed the spectrum of a finitely generated vector lattice V into its dual cone so that $V \cong{ }^{*} \mathrm{PWL}_{\mathbb{R}}(\operatorname{Spec}(V))$.

Abelian l-groups and \mathbb{Z}-reduced indices

Definition

If $w \in \mathbb{R}^{n}$, let $\langle w\rangle$ be the smallest subspace containing w that admits a basis in \mathbb{Z}^{n}.

An index $\mathbf{v}=\left(v_{1}, \ldots, v_{k}\right)$ is \mathbb{Z}-reduced if $\left\langle v_{i}\right\rangle$ and $\left\langle v_{j}\right\rangle$ are orthogonal for each $i \neq j$.

Abelian ℓ-groups and \mathbb{Z}-reduced indices

Definition

If $w \in \mathbb{R}^{n}$, let $\langle w\rangle$ be the smallest subspace containing w that admits a basis in \mathbb{Z}^{n}.

An index $\mathbf{v}=\left(v_{1}, \ldots, v_{k}\right)$ is \mathbb{Z}-reduced if $\left\langle v_{i}\right\rangle$ and $\left\langle v_{j}\right\rangle$ are orthogonal for each $i \neq j$.

Using a sort of Gram-Schmidt process, we can associate to each index \mathbf{v} a unique \mathbb{Z}-reduced index red(v).

Abelian l-groups and \mathbb{Z}-reduced indices

Definition

If $w \in \mathbb{R}^{n}$, let $\langle w\rangle$ be the smallest subspace containing w that admits a basis in \mathbb{Z}^{n}.

An index $\mathbf{v}=\left(v_{1}, \ldots, v_{k}\right)$ is \mathbb{Z}-reduced if $\left\langle v_{i}\right\rangle$ and $\left\langle v_{j}\right\rangle$ are orthogonal for each $i \neq j$.

Using a sort of Gram-Schmidt process, we can associate to each index \mathbf{v} a unique \mathbb{Z}-reduced index red(\mathbf{v}).

Theorem (C., Lapenta, and Spada)

In the Zariski topology of \mathcal{U}^{n} relative to abelian ℓ-groups each irreducible closed of \mathcal{U}^{n} is of the form

$$
\bigcup\{\text { Cone }(\mathbf{w}) \mid \operatorname{red}(\mathbf{w})=\mathbf{v}\} .
$$

for some \mathbb{Z}-reduced index \mathbf{v}.

MV-algebras and Riesz MV-algebras

Theorem (C., Lapenta, and Spada)

Let γ be a cardinal. There exists an ultrapower \mathcal{U} of $[0,1]$ such that:

- The category of κ-generated MV-algebras for some $\kappa \leq \gamma$ is dually equivalent to the category of Zariski closed subsets of \mathcal{U}^{κ} for some $\kappa \leq \gamma$.
- The category of κ-generated Riesz MV-algebras for some $\kappa \leq \gamma$ is dually equivalent to the category of Zariski closed subsets of \mathcal{U}^{κ} for some $\kappa \leq \gamma$.

MV-algebras and Riesz MV-algebras

Theorem (C., Lapenta, and Spada)

Let γ be a cardinal. There exists an ultrapower \mathcal{U} of $[0,1]$ such that:

- The category of κ-generated MV-algebras for some $\kappa \leq \gamma$ is dually equivalent to the category of Zariski closed subsets of \mathcal{U}^{κ} for some $\kappa \leq \gamma$.
- The category of κ-generated Riesz MV-algebras for some $\kappa \leq \gamma$ is dually equivalent to the category of Zariski closed subsets of \mathcal{U}^{κ} for some $\kappa \leq \gamma$.

The irreducible closed in \mathcal{U}^{n} correspond to "infinitesimal simplices".

MV-algebras and Riesz MV-algebras

Theorem (C., Lapenta, and Spada)

Let γ be a cardinal. There exists an ultrapower \mathcal{U} of $[0,1]$ such that:

- The category of κ-generated MV-algebras for some $\kappa \leq \gamma$ is dually equivalent to the category of Zariski closed subsets of \mathcal{U}^{κ} for some $\kappa \leq \gamma$.
- The category of κ-generated Riesz MV-algebras for some $\kappa \leq \gamma$ is dually equivalent to the category of Zariski closed subsets of \mathcal{U}^{κ} for some $\kappa \leq \gamma$.

The irreducible closed in \mathcal{U}^{n} correspond to "infinitesimal simplices".
This is an affine version of the dualities for abelian ℓ-groups and vector lattices.

THANK YOU!

