Dualities for abelian ℓ -groups and vector lattices beyond archimedeanity

Luca Carai, University of Salerno

joint work with S. Lapenta and L. Spada

Ordered Algebras and Logic, Les Diablerets, Switzerland April 2, 2022

Abelian ℓ -groups and vector lattices

An abelian ℓ-group is an abelian group A equipped with a lattice order such that a ≤ b implies a + c ≤ b + c for every a, b, c ∈ A.

- An abelian ℓ-group is an abelian group A equipped with a lattice order such that a ≤ b implies a + c ≤ b + c for every a, b, c ∈ A.
- A vector lattice is an abelian ℓ-group V equipped with a structure of ℝ-vector space such that 0 ≤ r and 0 ≤ v imply rv ≥ 0 for each r ∈ ℝ and v ∈ V.

- An abelian ℓ-group is an abelian group A equipped with a lattice order such that a ≤ b implies a + c ≤ b + c for every a, b, c ∈ A.
- A vector lattice is an abelian ℓ-group V equipped with a structure of ℝ-vector space such that 0 ≤ r and 0 ≤ v imply rv ≥ 0 for each r ∈ ℝ and v ∈ V.

Abelian ℓ -groups and vector lattices form varieties.

ℓ -ideals

Congruences in abelian $\ell\text{-}\mathsf{groups}$ and vector lattices correspond to $\ell\text{-}\mathsf{ideals}.$

Definition

- An *l*-ideal in an abelian *l*-group is a subgroup *I* that is convex, i.e. |*a*| ≤ |*b*| and *b* ∈ *I* imply *a* ∈ *I*.
- An *l*-ideal in a vector lattice is a vector subspace that is convex.

ℓ -ideals

Congruences in abelian $\ell\text{-}\mathsf{groups}$ and vector lattices correspond to $\ell\text{-}\mathsf{ideals}.$

Definition

- An *l*-ideal in an abelian *l*-group is a subgroup *I* that is convex, i.e. |*a*| ≤ |*b*| and *b* ∈ *I* imply *a* ∈ *I*.
- An *l*-ideal in a vector lattice is a vector subspace that is convex.

Definition

- A proper ℓ-ideal is called maximal if it is maximal wrt inclusion.
- A nontrivial abelian *l*-group/vector lattice A is simple if {0} and A are the only *l*-ideals of A.

An abelian ℓ -group/vector lattice is semisimple if the intersection of all its maximal ℓ -ideals is $\{0\}$.

It is archimedean if $na \leq b$ for every $n \in \mathbb{N}$ implies $a \leq 0$.

An abelian ℓ -group/vector lattice is semisimple if the intersection of all its maximal ℓ -ideals is $\{0\}$.

It is archimedean if $na \leq b$ for every $n \in \mathbb{N}$ implies $a \leq 0$.

 $\mathsf{Semisimple} \Rightarrow \mathsf{archimedean}$

An abelian ℓ -group/vector lattice is semisimple if the intersection of all its maximal ℓ -ideals is $\{0\}$.

It is archimedean if $na \leq b$ for every $n \in \mathbb{N}$ implies $a \leq 0$.

Semisimple \Rightarrow archimedean Archimedean \Rightarrow semisimple (if finitely generated)

An abelian ℓ -group/vector lattice is semisimple if the intersection of all its maximal ℓ -ideals is $\{0\}$.

It is archimedean if $na \leq b$ for every $n \in \mathbb{N}$ implies $a \leq 0$.

Semisimple \Rightarrow archimedean Archimedean \Rightarrow semisimple (if finitely generated)

- A/I is simple iff I is maximal.
- A/I is semisimple iff I is intersection of maximal ℓ -ideals.

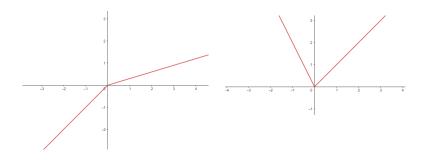
Baker-Beynon duality

Definition

A continuous function $f : \mathbb{R}^{\kappa} \to \mathbb{R}$ is piecewise linear if there exist g_1, \ldots, g_n linear homogeneous polynomials in the variables $(x_{\alpha})_{\alpha < \kappa}$ such that for each $x \in \mathbb{R}^{\kappa}$ we have $f(x) = g_i(x)$ for some $i = 1, \ldots, n$.

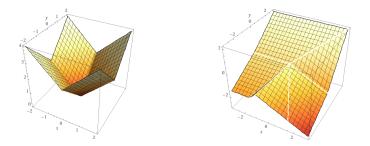
Definition

A continuous function $f : \mathbb{R}^{\kappa} \to \mathbb{R}$ is piecewise linear if there exist g_1, \ldots, g_n linear homogeneous polynomials in the variables $(x_{\alpha})_{\alpha < \kappa}$ such that for each $x \in \mathbb{R}^{\kappa}$ we have $f(x) = g_i(x)$ for some $i = 1, \ldots, n$.



Definition

A continuous function $f : \mathbb{R}^{\kappa} \to \mathbb{R}$ is piecewise linear if there exist g_1, \ldots, g_n linear homogeneous polynomials in the variables $(x_{\alpha})_{\alpha < \kappa}$ such that for each $x \in \mathbb{R}^{\kappa}$ we have $f(x) = g_i(x)$ for some $i = 1, \ldots, n$.



The set PWL_ℝ(ℝ^κ) of piecewise linear functions on ℝ^κ is a vector lattice with pointwise operations.

- The set PWL_ℝ(ℝ^κ) of piecewise linear functions on ℝ^κ is a vector lattice with pointwise operations.
- The set PWL_Z(ℝ^κ) of piecewise linear functions on ℝ^κ such that g₁,..., g_n have integer coefficients is an abelian ℓ-group with pointwise operations.

- The set PWL_ℝ(ℝ^κ) of piecewise linear functions on ℝ^κ is a vector lattice with pointwise operations.
- The set PWL_Z(ℝ^κ) of piecewise linear functions on ℝ^κ such that g₁,..., g_n have integer coefficients is an abelian ℓ-group with pointwise operations.

Theorem

- PWL_R(R^κ) is iso to the free vector lattice on κ generators.
- $PWL_{\mathbb{Z}}(\mathbb{R}^{\kappa})$ is iso to the free abelian ℓ -group on κ generators.

If $X \subseteq \mathbb{R}^{\kappa}$, we denote by $PWL_{\mathbb{R}}(X)$ and $PWL_{\mathbb{Z}}(X)$ the sets of piecewise linear maps restricted to X.

If $X \subseteq \mathbb{R}^{\kappa}$, we denote by $PWL_{\mathbb{R}}(X)$ and $PWL_{\mathbb{Z}}(X)$ the sets of piecewise linear maps restricted to X.

Definition

A subset of \mathbb{R}^{κ} is a cone if it is closed under multiplication by nonnegative scalars.

If $X \subseteq \mathbb{R}^{\kappa}$, we denote by $\mathsf{PWL}_{\mathbb{R}}(X)$ and $\mathsf{PWL}_{\mathbb{Z}}(X)$ the sets of piecewise linear maps restricted to X.

Definition

A subset of \mathbb{R}^{κ} is a cone if it is closed under multiplication by nonnegative scalars.

Theorem (Baker 1968)

- Every κ-generated semisimple vector lattice is isomorphic to PWL_R(C) where C is a cone that is closed in ℝ^κ.
- Every κ-generated semisimple abelian ℓ-group is isomorphic to PWL_Z(C) where C is a cone that is closed in ℝ^κ.

Theorem (Beynon 1974)

 The category of semisimple vector lattices is dually equivalent to the category of closed cones in ℝ^κ and piecewise linear maps with real coefficients.

Theorem (Beynon 1974)

- The category of semisimple vector lattices is dually equivalent to the category of closed cones in ℝ^κ and piecewise linear maps with real coefficients.
- The category of semisimple abelian *l*-groups is dually equivalent to the category of closed cones in ℝ^κ and piecewise linear maps with integer coefficients.

Theorem (Beynon 1974)

- The category of finitely generated archimedean vector lattices is dually equivalent to the category of closed cones in ℝⁿ for n ∈ N and piecewise linear maps with real coefficients.
- The category of finitely generated archimedean abelian
 ℓ-groups is dually equivalent to the category of closed cones in
 ℝⁿ for n ∈ N and piecewise linear maps with integer
 coefficients.

General affine duality approach

Let V be the variety of abelian ℓ -groups or the variety of vector lattices. Let $A \in V$, κ a cardinal, and \mathscr{F}_{κ} be the free algebra in V over κ generators.

Let V be the variety of abelian ℓ -groups or the variety of vector lattices. Let $A \in V$, κ a cardinal, and \mathscr{F}_{κ} be the free algebra in V over κ generators.

For any $T \subseteq \mathscr{F}_{\kappa}$ and $S \subseteq A^{\kappa}$, we define the following operators.

$$\mathbb{V}_A(T) = \{ x \in A^{\kappa} \mid t(x) = 0 \text{ for all } t \in T \}$$
$$\mathbb{I}_A(S) = \{ t \in \mathscr{F}_{\kappa} \mid t(x) = 0 \text{ for all } x \in S \}.$$

 $\mathbb{I}_A(S)$ is always an ℓ -ideal.

Let V be the variety of abelian ℓ -groups or the variety of vector lattices. Let $A \in V$, κ a cardinal, and \mathscr{F}_{κ} be the free algebra in V over κ generators.

For any $T \subseteq \mathscr{F}_{\kappa}$ and $S \subseteq A^{\kappa}$, we define the following operators.

$$\mathbb{V}_A(T) = \{ x \in A^{\kappa} \mid t(x) = 0 \text{ for all } t \in T \}$$
$$\mathbb{I}_A(S) = \{ t \in \mathscr{F}_{\kappa} \mid t(x) = 0 \text{ for all } x \in S \}$$

 $\mathbb{I}_A(S)$ is always an ℓ -ideal.

Basic Galois connection

$$T\subseteq \mathbb{I}_{A}\left(S
ight) \quad ext{iff} \quad S\subseteq \mathbb{V}_{A}\left(T
ight) \,.$$

Algebraic Nullstellensatz (Caramello, Marra, and Spada 2021)

Let *I* be an *ℓ*-ideal of *ℱ_κ*. We have *I* = I_A(x) for some x ∈ A^κ iff *ℱ_κ* /*I* embeds into A.

Algebraic Nullstellensatz (Caramello, Marra, and Spada 2021)

Let *I* be an *ℓ*-ideal of *ℱ_κ*. We have *I* = I_A(x) for some x ∈ A^κ iff *ℱ_κ* /*I* embeds into A.

•
$$\mathbb{I}_A(S) = \bigcap_{x \in S} \mathbb{I}_A(x).$$

Algebraic Nullstellensatz

(Caramello, Marra, and Spada 2021)

- Let *I* be an *ℓ*-ideal of *ℱ_κ*. We have *I* = I_A(x) for some x ∈ A^κ iff *ℱ_κ* /*I* embeds into A.
- $\mathbb{I}_A(S) = \bigcap_{x \in S} \mathbb{I}_A(x).$

Definition

The subsets $\mathbb{V}_A(I) = \{x \in A^{\kappa} \mid t(x) = 0 \text{ for all } t \in I\}$ are the closed subsets of a topology on A^{κ} called the Zariski topology.

Algebraic Nullstellensatz

(Caramello, Marra, and Spada 2021)

- Let *I* be an *ℓ*-ideal of *ℱ_κ*. We have *I* = I_A(x) for some x ∈ A^κ iff *ℱ_κ* /*I* embeds into A.
- $\mathbb{I}_A(S) = \bigcap_{x \in S} \mathbb{I}_A(x).$

Definition

The subsets $\mathbb{V}_A(I) = \{x \in A^{\kappa} \mid t(x) = 0 \text{ for all } t \in I\}$ are the closed subsets of a topology on A^{κ} called the Zariski topology.

The fixpoints of the Galois connection are:

- the intersections of ideals *I* of *F_κ* such that *F_κ*/*I* embeds into *A*,
- the Zariski closed subsets of A^κ.

Duality

Theorem (Caramello, Marra, and Spada 2021)

The Galois connection induces a dual equivalence between

 the category of algebras of V that are subdirect products of subalgebras of A, and

Duality

Theorem (Caramello, Marra, and Spada 2021)

The Galois connection induces a dual equivalence between

- the category of algebras of V that are subdirect products of subalgebras of A, and
- the category of Zariski closed subsets C of A^κ where κ ranges over all the cardinal numbers.

Duality

Theorem (Caramello, Marra, and Spada 2021)

The Galois connection induces a dual equivalence between

- the category of algebras of V that are subdirect products of subalgebras of A, and
- the category of Zariski closed subsets C of A^κ where κ ranges over all the cardinal numbers.

$$\mathscr{F}_{\kappa}/I \longrightarrow \mathbb{V}_{A}(I)$$

$$\mathscr{F}_{\kappa}/\mathbb{I}_{A}(C) \leftarrow C$$

Theorem

An abelian ℓ -group embeds into \mathbb{R} iff it is simple or trivial. Moreover, every simple vector lattice is isomorphic to \mathbb{R} .

An abelian ℓ -group embeds into \mathbb{R} iff it is simple or trivial. Moreover, every simple vector lattice is isomorphic to \mathbb{R} .

- Every semisimple abelian ℓ -group/vector lattice is subdirect product of subalgebras of \mathbb{R} .

An abelian ℓ -group embeds into \mathbb{R} iff it is simple or trivial. Moreover, every simple vector lattice is isomorphic to \mathbb{R} .

- Every semisimple abelian ℓ-group/vector lattice is subdirect product of subalgebras of ℝ.
- The Zariski closed subsets of \mathbb{R}^{κ} are the closed cones.

An abelian ℓ -group embeds into \mathbb{R} iff it is simple or trivial. Moreover, every simple vector lattice is isomorphic to \mathbb{R} .

- Every semisimple abelian ℓ-group/vector lattice is subdirect product of subalgebras of ℝ.
- The Zariski closed subsets of \mathbb{R}^{κ} are the closed cones.
- $\mathscr{F}_{\kappa} / \mathbb{I}_{\mathbb{R}}(C) \cong \mathsf{PWL}_{\mathbb{R}}(C)$ (vector lattices) $\mathscr{F}_{\kappa} / \mathbb{I}_{\mathbb{R}}(C) \cong \mathsf{PWL}_{\mathbb{Z}}(C)$ (abelian ℓ -groups)

An abelian ℓ -group embeds into \mathbb{R} iff it is simple or trivial. Moreover, every simple vector lattice is isomorphic to \mathbb{R} .

- Every semisimple abelian ℓ-group/vector lattice is subdirect product of subalgebras of ℝ.
- The Zariski closed subsets of \mathbb{R}^{κ} are the closed cones.
- $\mathscr{F}_{\kappa} / \mathbb{I}_{\mathbb{R}}(C) \cong \mathsf{PWL}_{\mathbb{R}}(C)$ (vector lattices) $\mathscr{F}_{\kappa} / \mathbb{I}_{\mathbb{R}}(C) \cong \mathsf{PWL}_{\mathbb{Z}}(C)$ (abelian ℓ -groups)

Thus, this approach yields Baker-Beynon duality.

Beyond Baker-Beynon duality

An ℓ -ideal *I* is prime if $a \land b \in I$ implies $a \in I$ or $b \in I$.

An ℓ -ideal *I* is prime if $a \land b \in I$ implies $a \in I$ or $b \in I$.

- A/I is linearly ordered iff I is prime.
- Every ℓ -ideal is intersection of prime ℓ -ideals.
- Every abelian *l*-group/vector lattice is subdirect product of linearly ordered ones.

An ℓ -ideal *I* is prime if $a \land b \in I$ implies $a \in I$ or $b \in I$.

- *A*/*I* is linearly ordered iff *I* is prime.
- Every ℓ -ideal is intersection of prime ℓ -ideals.
- Every abelian *l*-group/vector lattice is subdirect product of linearly ordered ones.

To apply the general affine duality approach we need A such that every linearly ordered abelian ℓ -group/vector lattice embeds into A.

An ℓ -ideal *I* is prime if $a \land b \in I$ implies $a \in I$ or $b \in I$.

- *A*/*I* is linearly ordered iff *I* is prime.
- Every ℓ -ideal is intersection of prime ℓ -ideals.
- Every abelian *l*-group/vector lattice is subdirect product of linearly ordered ones.

To apply the general affine duality approach we need A such that every linearly ordered abelian ℓ -group/vector lattice embeds into A.

This is not possible for cardinality reasons. However, such an A exists if we impose a bound on the cardinality/number of generators.

An ℓ -ideal *I* is prime if $a \land b \in I$ implies $a \in I$ or $b \in I$.

- A/I is linearly ordered iff I is prime.
- Every ℓ -ideal is intersection of prime ℓ -ideals.
- Every abelian *l*-group/vector lattice is subdirect product of linearly ordered ones.

To apply the general affine duality approach we need A such that every linearly ordered abelian ℓ -group/vector lattice embeds into A.

This is not possible for cardinality reasons. However, such an A exists if we impose a bound on the cardinality/number of generators.

Theorem

Let γ be a cardinal. There exists an ultrapower \mathcal{U} of \mathbb{R} such that every κ -generated linearly ordered abelian ℓ -group/vector lattice with $\kappa \leq \gamma$ embeds into \mathcal{U} .

If $\kappa \leq \gamma$, then every κ -generated abelian ℓ -group/vector lattice is subdirect product of subalgebras of \mathcal{U} .

If $\kappa \leq \gamma$, then every κ -generated abelian ℓ -group/vector lattice is subdirect product of subalgebras of \mathcal{U} .

Theorem (C., Lapenta, and Spada)

Let γ be a cardinal. There exists an ultrapower \mathcal{U} of \mathbb{R} such that:

The category of κ-generated vector lattices for some κ ≤ γ is dually equivalent to the category of Zariski closed subsets of U^κ for some κ ≤ γ.

If $\kappa \leq \gamma$, then every κ -generated abelian ℓ -group/vector lattice is subdirect product of subalgebras of \mathcal{U} .

Theorem (C., Lapenta, and Spada)

Let γ be a cardinal. There exists an ultrapower \mathcal{U} of \mathbb{R} such that:

- The category of κ-generated vector lattices for some κ ≤ γ is dually equivalent to the category of Zariski closed subsets of U^κ for some κ ≤ γ.
- The category of κ-generated abelian ℓ-groups for some κ ≤ γ is dually equivalent to the category of Zariski closed subsets of U^κ for some κ ≤ γ.

If $\kappa \leq \gamma$, then every κ -generated abelian ℓ -group/vector lattice is subdirect product of subalgebras of \mathcal{U} .

Theorem (C., Lapenta, and Spada)

Let γ be a cardinal. There exists an ultrapower \mathcal{U} of \mathbb{R} such that:

- The category of κ-generated vector lattices for some κ ≤ γ is dually equivalent to the category of Zariski closed subsets of U^κ for some κ ≤ γ.
- The category of κ-generated abelian ℓ-groups for some κ ≤ γ is dually equivalent to the category of Zariski closed subsets of U^κ for some κ ≤ γ.

The Zariski topology on \mathcal{U}^{κ} depends on whether we work with abelian ℓ -groups or vector lattices.

Enlargements of piecewise linear functions

Every piecewise linear function $f : \mathbb{R} \to \mathbb{R}$ can be extended to a function ${}^*f : \mathcal{U} \to \mathcal{U}$ by setting ${}^*f([(r_i)_{i \in I}]) = [(f(r_i))_{i \in I}].$

Enlargements of piecewise linear functions

Every piecewise linear function $f : \mathbb{R} \to \mathbb{R}$ can be extended to a function ${}^*f : \mathcal{U} \to \mathcal{U}$ by setting ${}^*f([(r_i)_{i \in I}]) = [(f(r_i))_{i \in I}]$. Similarly, we can extend every piecewise linear $f : \mathbb{R}^{\kappa} \to \mathbb{R}$ to ${}^*f : \mathcal{U}^{\kappa} \to \mathcal{U}$ which is called the enlargement of f.

Enlargements of piecewise linear functions

Every piecewise linear function $f : \mathbb{R} \to \mathbb{R}$ can be extended to a function ${}^*f : \mathcal{U} \to \mathcal{U}$ by setting ${}^*f([(r_i)_{i \in I}]) = [(f(r_i))_{i \in I}]$. Similarly, we can extend every piecewise linear $f : \mathbb{R}^{\kappa} \to \mathbb{R}$ to ${}^*f : \mathcal{U}^{\kappa} \to \mathcal{U}$ which is called the enlargement of f.

We define:

 ${}^{*}\mathsf{PWL}_{\mathbb{R}}(\mathcal{U}^{\kappa}) = \{{}^{*}f \mid f \in \mathsf{PWL}_{\mathbb{R}}(\mathbb{R}^{\kappa})\}, \\ {}^{*}\mathsf{PWL}_{\mathbb{Z}}(\mathcal{U}^{\kappa}) = \{{}^{*}f \mid f \in \mathsf{PWL}_{\mathbb{Z}}(\mathbb{R}^{\kappa})\}.$

Every piecewise linear function $f : \mathbb{R} \to \mathbb{R}$ can be extended to a function ${}^*f : \mathcal{U} \to \mathcal{U}$ by setting ${}^*f([(r_i)_{i \in I}]) = [(f(r_i))_{i \in I}]$. Similarly, we can extend every piecewise linear $f : \mathbb{R}^{\kappa} \to \mathbb{R}$ to ${}^*f : \mathcal{U}^{\kappa} \to \mathcal{U}$ which is called the enlargement of f.

We define:

* $\mathsf{PWL}_{\mathbb{R}}(\mathcal{U}^{\kappa}) = \{ *f \mid f \in \mathsf{PWL}_{\mathbb{R}}(\mathbb{R}^{\kappa}) \},$ * $\mathsf{PWL}_{\mathbb{Z}}(\mathcal{U}^{\kappa}) = \{ *f \mid f \in \mathsf{PWL}_{\mathbb{Z}}(\mathbb{R}^{\kappa}) \}.$

If $X \subseteq \mathcal{U}^{\kappa}$, we can consider $^*\mathsf{PWL}_{\mathbb{R}}(X)$ and $^*\mathsf{PWL}_{\mathbb{Z}}(X)$.

Proposition

Let C be a Zariski closed subset of \mathcal{U}^{κ} .

- $\mathscr{F}_{\kappa} / \mathbb{I}_{\mathcal{U}}(C) \cong {}^*\mathsf{PWL}_{\mathbb{R}}(C)$ (vector lattices).
- $\mathscr{F}_{\kappa} / \mathbb{I}_{\mathcal{U}}(\mathcal{C}) \cong * \mathsf{PWL}_{\mathbb{Z}}(\mathcal{C})$ (abelian ℓ -groups).

The Zariski topology on \mathcal{U}^n

Definition

A closed subset of a topological space is said to be irreducible if

it is not the union of two proper closed subsets.

Definition

A closed subset of a topological space is said to be irreducible if it is not the union of two proper closed subsets.

Irreducible closed in \mathcal{U}^n are exactly the closure of points. They are the subsets $\mathbb{V}_{\mathcal{U}}(I)$ with I prime or $I = \mathscr{F}_n$.

Definition

A closed subset of a topological space is said to be irreducible if it is not the union of two proper closed subsets.

Irreducible closed in \mathcal{U}^n are exactly the closure of points. They are the subsets $\mathbb{V}_{\mathcal{U}}(I)$ with I prime or $I = \mathscr{F}_n$.

The irreducible Zariski-closed subsets of \mathbb{R}^n are the semilines starting from the origin ($\mathbb{V}_{\mathbb{R}}(I)$ with I maximal) and the origin ($\mathbb{V}_{\mathbb{R}}(I)$ with $I = \mathscr{F}_n$).

If $x \in \mathcal{U}^n$, then x can be written in a unique way as $\alpha_1 v_1 + \cdots + \alpha_k v_k$ with v_1, \ldots, v_k orthonormal vectors of \mathbb{R}^n and $0 < \alpha_1, \ldots, \alpha_k \in \mathcal{U}$ such that α_{i+1}/α_i is infinitesimal.

If $x \in \mathcal{U}^n$, then x can be written in a unique way as $\alpha_1 v_1 + \cdots + \alpha_k v_k$ with v_1, \ldots, v_k orthonormal vectors of \mathbb{R}^n and $0 < \alpha_1, \ldots, \alpha_k \in \mathcal{U}$ such that α_{i+1}/α_i is infinitesimal.

Thus, we can associate to each $x \in U^n$ the sequence $\mathbf{v} = (v_1, \dots, v_k)$ of orthonormal vectors. We call such sequences indices.

If $x \in \mathcal{U}^n$, then x can be written in a unique way as $\alpha_1 v_1 + \cdots + \alpha_k v_k$ with v_1, \ldots, v_k orthonormal vectors of \mathbb{R}^n and $0 < \alpha_1, \ldots, \alpha_k \in \mathcal{U}$ such that α_{i+1}/α_i is infinitesimal.

Thus, we can associate to each $x \in U^n$ the sequence $\mathbf{v} = (v_1, \dots, v_k)$ of orthonormal vectors. We call such sequences indices.

Let $Cone(\mathbf{v})$ be the set of points of \mathcal{U}^n whose index is a truncation of \mathbf{v} .

If $x \in \mathcal{U}^n$, then x can be written in a unique way as $\alpha_1 v_1 + \cdots + \alpha_k v_k$ with v_1, \ldots, v_k orthonormal vectors of \mathbb{R}^n and $0 < \alpha_1, \ldots, \alpha_k \in \mathcal{U}$ such that α_{i+1}/α_i is infinitesimal.

Thus, we can associate to each $x \in U^n$ the sequence $\mathbf{v} = (v_1, \dots, v_k)$ of orthonormal vectors. We call such sequences indices.

Let $Cone(\mathbf{v})$ be the set of points of \mathcal{U}^n whose index is a truncation of \mathbf{v} .

Theorem (C., Lapenta, Spada)

In the Zariski topology of \mathcal{U}^n relative to vector lattices each irreducible closed of \mathcal{U}^n is $Cone(\mathbf{v})$ for some index \mathbf{v} .

Transfer principle (Łoś Theorem)

Let φ be a first order formula and $*\varphi$ the formula obtained by replacing every predicate symbol P and every function symbol f with *P and *f. Then φ is true in \mathbb{R} iff $*\varphi$ is true in \mathcal{U} .

Transfer principle (Łoś Theorem)

Let φ be a first order formula and $*\varphi$ the formula obtained by replacing every predicate symbol P and every function symbol f with *P and *f. Then φ is true in \mathbb{R} iff $*\varphi$ is true in \mathcal{U} .

If **v** is an index, we say that a closed cone of \mathbb{R}^n is a **v**-cone if there exist real numbers $r_2, \ldots, r_k > 0$ such that the cone is generated by $\{v_1, v_1 + r_2v_2, \ldots, v_1 + r_2v_2 + \cdots + r_kv_k\}$.

Transfer principle (Łoś Theorem)

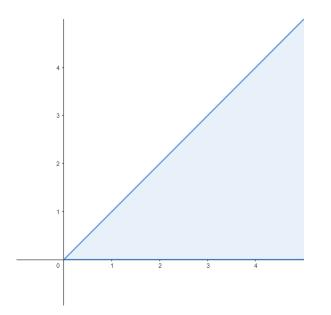
Let φ be a first order formula and $*\varphi$ the formula obtained by replacing every predicate symbol P and every function symbol f with *P and *f. Then φ is true in \mathbb{R} iff $*\varphi$ is true in \mathcal{U} .

If **v** is an index, we say that a closed cone of \mathbb{R}^n is a **v**-cone if there exist real numbers $r_2, \ldots, r_k > 0$ such that the cone is generated by $\{v_1, v_1 + r_2v_2, \ldots, v_1 + r_2v_2 + \cdots + r_kv_k\}$.

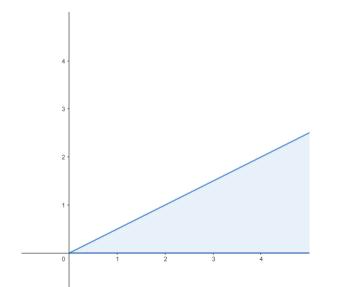
Proposition

 $Cone(\mathbf{v})$ is the intersection of the enlargements of all the **v**-cones.

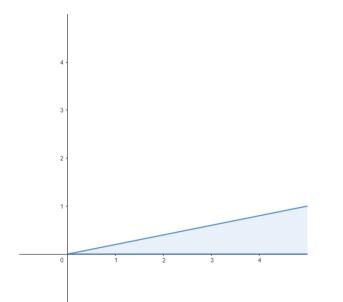
$$\mathbf{v} = ((1, 0), (0, 1)).$$



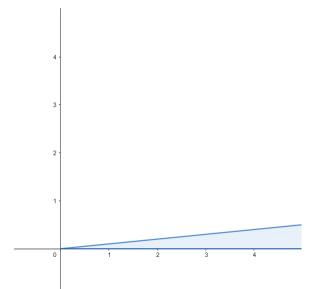
$$\mathbf{v} = ((1, 0), (0, 1)).$$



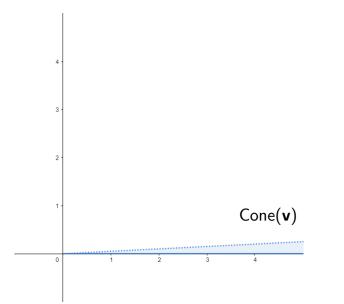
$$\mathbf{v} = ((1, 0), (0, 1)).$$



$$\mathbf{v} = ((1, 0), (0, 1)).$$



$$\mathbf{v} = ((1, 0), (0, 1)).$$



Theorem (C., Lapenta, and Spada)

If $f \in \mathsf{PWL}_{\mathbb{R}}(\mathbb{R}^n)$, then *f vanishes on $\mathsf{Cone}(\mathbf{v})$ iff f vanishes on

some **v**-cone.

Theorem (C., Lapenta, and Spada)

If $f \in PWL_{\mathbb{R}}(\mathbb{R}^n)$, then *f vanishes on Cone(**v**) iff f vanishes on some **v**-cone.

As a corollary, we obtain the description of prime ℓ -ideals in finitely generated vector lattices due to Panti.

Theorem (Panti 1999)

Each prime ℓ -ideal of the vector lattice \mathscr{F}_n is of the form $\{f \in \mathsf{PWL}_{\mathbb{R}}(\mathbb{R}^n) \mid f \text{ vanishes on a } \mathbf{v}\text{-cone}\}$ for some index \mathbf{v} .

Theorem (C., Lapenta, and Spada)

If $f \in PWL_{\mathbb{R}}(\mathbb{R}^n)$, then *f vanishes on Cone(**v**) iff f vanishes on some **v**-cone.

As a corollary, we obtain the description of prime $\ell\text{-ideals}$ in finitely generated vector lattices due to Panti.

Theorem (Panti 1999)

Each prime ℓ -ideal of the vector lattice \mathscr{F}_n is of the form $\{f \in \mathsf{PWL}_{\mathbb{R}}(\mathbb{R}^n) \mid f \text{ vanishes on a } \mathbf{v}\text{-cone}\}$ for some index \mathbf{v} .

Fix a positive infinitesimal $\varepsilon \in \mathcal{U}$. If *I* is the prime ℓ -ideal of the vector lattice \mathscr{F}_n associated with the index $\mathbf{v} = (v_1, \ldots, v_k)$, then $\mathbb{V}_{\mathcal{U}}(I) = \mathsf{cl}\{v_1 + \varepsilon v_2 + \cdots + \varepsilon^{k-1}v_k\}.$

Theorem (C., Lapenta, and Spada)

If $f \in PWL_{\mathbb{R}}(\mathbb{R}^n)$, then *f vanishes on Cone(**v**) iff f vanishes on some **v**-cone.

As a corollary, we obtain the description of prime $\ell\text{-ideals}$ in finitely generated vector lattices due to Panti.

Theorem (Panti 1999)

Each prime ℓ -ideal of the vector lattice \mathscr{F}_n is of the form $\{f \in \mathsf{PWL}_{\mathbb{R}}(\mathbb{R}^n) \mid f \text{ vanishes on a } \mathbf{v}\text{-cone}\}$ for some index \mathbf{v} .

Fix a positive infinitesimal $\varepsilon \in \mathcal{U}$. If *I* is the prime ℓ -ideal of the vector lattice \mathscr{F}_n associated with the index $\mathbf{v} = (v_1, \ldots, v_k)$, then $\mathbb{V}_{\mathcal{U}}(I) = \mathsf{cl}\{v_1 + \varepsilon v_2 + \cdots + \varepsilon^{k-1}v_k\}.$

This allows to embed the spectrum of a finitely generated vector lattice V into its dual cone so that $V \cong {}^{*}PWL_{\mathbb{R}}(Spec(V))$.

19/22

Abelian ℓ -groups and \mathbb{Z} -reduced indices

Definition

If $w \in \mathbb{R}^n$, let $\langle w \rangle$ be the smallest subspace containing w that admits a basis in \mathbb{Z}^n .

An index $\mathbf{v} = (v_1, \dots, v_k)$ is \mathbb{Z} -reduced if $\langle v_i \rangle$ and $\langle v_j \rangle$ are orthogonal for each $i \neq j$.

Abelian ℓ -groups and \mathbb{Z} -reduced indices

Definition

If $w \in \mathbb{R}^n$, let $\langle w \rangle$ be the smallest subspace containing w that admits a basis in \mathbb{Z}^n .

An index $\mathbf{v} = (v_1, \dots, v_k)$ is \mathbb{Z} -reduced if $\langle v_i \rangle$ and $\langle v_j \rangle$ are orthogonal for each $i \neq j$.

Using a sort of Gram-Schmidt process, we can associate to each index v a unique \mathbb{Z} -reduced index red(v).

Abelian ℓ -groups and \mathbb{Z} -reduced indices

Definition

If $w \in \mathbb{R}^n$, let $\langle w \rangle$ be the smallest subspace containing w that admits a basis in \mathbb{Z}^n .

An index $\mathbf{v} = (v_1, \dots, v_k)$ is \mathbb{Z} -reduced if $\langle v_i \rangle$ and $\langle v_j \rangle$ are orthogonal for each $i \neq j$.

Using a sort of Gram-Schmidt process, we can associate to each index \bm{v} a unique $\mathbb{Z}\text{-reduced index } \text{red}(\bm{v}).$

Theorem (C., Lapenta, and Spada)

In the Zariski topology of \mathcal{U}^n relative to abelian ℓ -groups each irreducible closed of \mathcal{U}^n is of the form

 $\bigcup \{ \mathsf{Cone}(\mathbf{w}) \mid \mathsf{red}(\mathbf{w}) = \mathbf{v} \}.$

for some \mathbb{Z} -reduced index **v**.

Theorem (C., Lapenta, and Spada)

Let γ be a cardinal. There exists an ultrapower \mathcal{U} of [0, 1] such that:

- The category of κ-generated MV-algebras for some κ ≤ γ is dually equivalent to the category of Zariski closed subsets of U^κ for some κ ≤ γ.
- The category of κ-generated Riesz MV-algebras for some κ ≤ γ is dually equivalent to the category of Zariski closed subsets of U^κ for some κ ≤ γ.

Theorem (C., Lapenta, and Spada)

Let γ be a cardinal. There exists an ultrapower \mathcal{U} of [0, 1] such that:

- The category of κ-generated MV-algebras for some κ ≤ γ is dually equivalent to the category of Zariski closed subsets of U^κ for some κ ≤ γ.
- The category of κ-generated Riesz MV-algebras for some κ ≤ γ is dually equivalent to the category of Zariski closed subsets of U^κ for some κ ≤ γ.

The irreducible closed in \mathcal{U}^n correspond to "infinitesimal simplices".

Theorem (C., Lapenta, and Spada)

Let γ be a cardinal. There exists an ultrapower \mathcal{U} of [0, 1] such that:

- The category of κ-generated MV-algebras for some κ ≤ γ is dually equivalent to the category of Zariski closed subsets of U^κ for some κ ≤ γ.
- The category of κ-generated Riesz MV-algebras for some κ ≤ γ is dually equivalent to the category of Zariski closed subsets of U^κ for some κ ≤ γ.

The irreducible closed in \mathcal{U}^n correspond to "infinitesimal simplices".

This is an affine version of the dualities for abelian $\ell\text{-}\mathsf{groups}$ and vector lattices.

THANK YOU!