Temporal interpretation of intuitionistic quantifiers

Luca Carai

joint work with Guram Bezhanishvili

New Mexico State University

Algebra|Coalgebra Seminar ILLC, University of Amsterdam June 10, 2020

Predicate Gödel translation

 $IQC \longrightarrow QS4$ $\begin{array}{rcl} \bot^t &=& \bot \\ P(x_1, \dots, x_n)^t &=& \Box P(x_1, \dots, x_n) \\ (A \wedge B)^t &=& A^t \wedge B^t \\ (A \vee B)^t &=& A^t \vee B^t \\ (A \to B)^t &=& \Box (A^t \to B^t) \\ (\forall xA)^t &=& \Box \forall xA^t \\ (\exists xA)^t &=& \exists xA^t \end{array}$

We consider a tense languages containing two modalities

- \Box_F interpreted as "always in the future",
- \Box_P interpreted as "always in the past".

Consequently

- $\Diamond_F := \neg \Box_F \neg$ interpreted as "sometime in the future",
- $\Diamond_P := \neg \Box_P \neg$ interpreted as "sometime in the past".

The logic S4.t is the least set of formulas of the tense propositional language containing all substitution instances of S4-axioms for both \Box_F and \Box_P , the axiom schemes

- $A \to \Box_P \Diamond_F A$
- $A \to \Box_F \Diamond_P A$

and closed under the inference rules

$$\frac{A \quad A \to B}{B} \qquad \text{Modus Ponens (MP)}$$

$$\frac{A}{\Box_F A} \quad \Box_F \text{-Necessitation (N_F)} \quad \frac{A}{\Box_P A} \quad \Box_P \text{-Necessitation (N_P)}$$

$$IPC \longrightarrow S4$$

$$\downarrow^{t} = \bot$$

$$p^{t} = \Box p$$

$$(A \land B)^{t} = A^{t} \land B^{t}$$

$$(A \lor B)^{t} = A^{t} \lor B^{t}$$

$$(A \to B)^{t} = \Box (A^{t} \to B^{t})$$

 $IPC \longrightarrow S4.t$ $\downarrow^{t} = \bot$ $p^{t} = \Box_{F}p$ $(A \land B)^{t} = A^{t} \land B^{t}$ $(A \lor B)^{t} = A^{t} \lor B^{t}$ $(A \to B)^{t} = \Box_{F}(A^{t} \to B^{t})$

 $HB \longrightarrow S4.t$ $\downarrow^{t} = \downarrow$ $p^{t} = \Box_{F}p$ $(A \land B)^{t} = A^{t} \land B^{t}$ $(A \lor B)^{t} = A^{t} \lor B^{t}$ $(A \to B)^{t} = \Box_{F}(A^{t} \to B^{t})$ $(A \leftarrow B)^{t} =$

 $HB \longrightarrow S4.t$ $\downarrow^{t} = \downarrow$ $p^{t} = \Box_{F}p$ $(A \land B)^{t} = A^{t} \land B^{t}$ $(A \lor B)^{t} = \Box_{F}(A^{t} \to B^{t})$ $(A \to B)^{t} = \Box_{F}(A^{t} \to B^{t})$ $(A \leftarrow B)^{t} = \Diamond_{P}(\neg A^{t} \land B^{t})$

Predicate Gödel translation

 $IQC \longrightarrow QS4$ $\begin{array}{rcl} \bot^t &=& \bot \\ P(x_1, \dots, x_n)^t &=& \Box P(x_1, \dots, x_n) \\ (A \wedge B)^t &=& A^t \wedge B^t \\ (A \vee B)^t &=& A^t \vee B^t \\ (A \to B)^t &=& \Box (A^t \to B^t) \\ (\forall xA)^t &=& \Box \forall xA^t \\ (\exists xA)^t &=& \exists xA^t \end{array}$

Let $\ensuremath{\mathcal{L}}$ be a predicate language without function symbols.

Definition

The *intuitionistic predicate logic* IQC is the least set of formulas of \mathcal{L} containing all substitution instances of theorems of IPC, the axiom schemes

\$\forall xA \rightarrow A(y/x)\$ Universal instantiation (UI)
\$A(y/x) \rightarrow \exists xA\$
\$\forall x(A \rightarrow B) \rightarrow (A \rightarrow \forall xB)\$ with x not free in A
\$\forall x(A \rightarrow B) \rightarrow (\exists xA \rightarrow B)\$ with x not free in B
and closed under the inference rules

$$\frac{A \quad A \to B}{B} \quad (MP) \qquad \frac{A}{\forall xA} \quad (Gen)$$

An IQC-*frame* is a triple $\mathfrak{F} = (W, R, D)$ where

- W is a nonempty set whose elements are called the *worlds* of \mathfrak{F} .
- R is a partial order on W.
- D is a function that associates to each w ∈ W a nonempty set D_w such that wRv implies D_w ⊆ D_v for each w, v ∈ W. The set D_w is called the *domain* of w.

- An *interpretation* of \mathcal{L} in \mathfrak{F} is a function I associating to each world w and any *n*-ary predicate symbol P an *n*-ary relation $I_w(P) \subseteq (D_w)^n$ such that wRv implies $I_w(P) \subseteq I_v(P)$.
- A model is a pair M = (F, I) where F is an IQC-frame and I is an interpretation in F.
- Let w be a world of \mathfrak{F} . A w-assignment is a function σ associating to each individual variable x an element $\sigma(x)$ of D_w . Note that if wRv, then σ is also a v-assignment.
- Let σ and τ be two *w*-assignments and *x* an individual variable. Then τ is said to be an *x*-variant of σ if $\tau(y) = \sigma(y)$ for all $y \neq x$.

 $\mathfrak{M} \vDash_{w}^{\sigma} \bot \mathfrak{M} \vDash_{w}^{\sigma} P(x_{1}, \dots, x_{n})$ $\mathfrak{M} \vDash_{w}^{\sigma} B \land C$ $\mathfrak{M} \vDash_{w}^{\sigma} B \lor C$ $\mathfrak{M} \vDash_{w}^{\sigma} B \to C$ $\mathfrak{M} \vDash_{w}^{\sigma} \forall x B$ $\mathfrak{M} \vDash_{w}^{\sigma} \exists x B$

never iff $(\sigma(x_1), \ldots, \sigma(x_n)) \in I_w(P)$ iff $\mathfrak{M} \models_w^{\sigma} B$ and $\mathfrak{M} \models_w^{\sigma} C$ iff $\mathfrak{M} \models_w^{\sigma} B$ or $\mathfrak{M} \models_w^{\sigma} C$ iff for all v with wRv, if $\mathfrak{M} \models_v^{\sigma} B$, then $\mathfrak{M} \models_v^{\sigma} C$ iff for all v with wRv and each v-assignment τ that is an x-variant of σ , $\mathfrak{M} \models_v^{\tau} B$ iff there exists a w-assignment τ that is an x-variant of σ such that $\mathfrak{M} \models_w^{\tau} B$

Kripke semantics for IQC

Definition

- We say that A is *true* in a world w of M, written M⊨_w A, if for all w-assignments σ, we have M⊨_w^σ A.
- We say that A is true in M, written M ⊨ A, if for all worlds w ∈ W, we have M ⊨_w A.
- We say that A is *valid* in a frame \mathfrak{F} , written $\mathfrak{F} \vDash A$, if for all models \mathfrak{M} based on \mathfrak{F} , we have $\mathfrak{M} \vDash A$.

Theorem (Kripke 1965)

The intuitionistic predicate logic IQC is sound and complete with respect to Kripke semantics; that is, for each formula A,

 $IQC \vdash A$ iff $\mathfrak{F} \vDash A$ for each IQC-frame \mathfrak{F} .

$\mathfrak{M} \vDash_{w}^{\sigma} \forall xB \quad \text{iff} \quad \text{for all } v \text{ with } wRv \text{ and each } v \text{-assignment } \tau \\ \text{that is an } x \text{-variant of } \sigma, \ \mathfrak{M} \vDash_{v}^{\tau} B \\ (B \text{ is true for every object in every world} \\ accessible \text{ from } w)$

- $\mathfrak{M} \vDash_{w}^{\sigma} \forall xB \quad \text{iff} \quad \text{for all } v \text{ with } wRv \text{ and each } v \text{-assignment } \tau \\ \text{that is an } x \text{-variant of } \sigma, \ \mathfrak{M} \vDash_{v}^{\tau} B \\ (B \text{ is true for every object in every world} \\ accessible \text{ from } w)$
- $\mathfrak{M} \vDash_{w}^{\sigma} \exists xB \quad \text{iff} \quad \text{there exists a } w \text{-assignment } \tau \\ \text{that is an } x \text{-variant of } \sigma \text{ such that } \mathfrak{M} \vDash_{w}^{\tau} B \\ (B \text{ is true for some object in } w)$

Removing asymmetry via the temporal interpretation

- $\mathfrak{M} \vDash_{w}^{\sigma} \forall xB \quad \text{iff} \quad \text{for all } v \text{ with } wRv \text{ and each } v \text{-assignment } \tau \\ \text{that is an } x \text{-variant of } \sigma, \ \mathfrak{M} \vDash_{v}^{\tau} B \\ (B \text{ is true for every object in the future})$
- $\mathfrak{M} \vDash_{w}^{\sigma} \exists xB \quad \text{iff} \quad \text{there exists a } w \text{-assignment } \tau \\ \text{that is an } x \text{-variant of } \sigma \text{ such that } \mathfrak{M} \vDash_{w}^{\tau} B \\ (B \text{ is true for some object in the present})$

Removing asymmetry via the temporal interpretation

- $\mathfrak{M} \vDash_{w}^{\sigma} \forall xB \quad \text{iff} \quad \text{for all } v \text{ with } wRv \text{ and each } v \text{-assignment } \tau \\ \text{that is an } x \text{-variant of } \sigma, \mathfrak{M} \vDash_{v}^{\tau} B \\ (B \text{ is true for every object in the future})$
- $\mathfrak{M} \vDash_{w}^{\sigma} \exists xB \quad \text{iff} \quad \text{there exists } v \text{ with } vRw \text{ and } a v \text{-assignment } \tau \\ \text{that is an } x \text{-variant of } \sigma \text{ such that } \mathfrak{M} \vDash_{v}^{\tau} B \\ (B \text{ is true for some object in the past})$

 $IQC \longrightarrow QS4$ $|^t = |$ $P(x_1,\ldots,x_n)^t = \Box P(x_1,\ldots,x_n)$ $(A \wedge B)^t = A^t \wedge B^t$ $(A \vee B)^t = A^t \vee B^t$ $(A \rightarrow B)^t = \Box (A^t \rightarrow B^t)$ $(\forall xA)^t = \Box \forall xA^t$ $(\exists xA)^t = \exists xA^t$

$$IQC \longrightarrow ???$$

$$\downarrow^{t} = \downarrow$$

$$P(x_{1}, \dots, x_{n})^{t} = \Box_{F}P(x_{1}, \dots, x_{n})$$

$$(A \land B)^{t} = A^{t} \land B^{t}$$

$$(A \lor B)^{t} = A^{t} \lor B^{t}$$

$$(A \to B)^{t} = \Box_{F}(A^{t} \to B^{t})$$

$$(\forall xA)^{t} = \Box_{F}\forall xA^{t}$$

 $IQC \longrightarrow ???$

$$L^{t} = L P(x_{1},...,x_{n})^{t} = \Box_{F}P(x_{1},...,x_{n}) (A \land B)^{t} = A^{t} \land B^{t} (A \lor B)^{t} = A^{t} \lor B^{t} (A \to B)^{t} = \Box_{F}(A^{t} \to B^{t}) (\forall xA)^{t} = \Box_{F}\forall xA^{t} (\exists xA)^{t} = \Diamond_{P}\exists xA^{t}$$

Predicate modal logics

Let \mathcal{L}_{\Box} be a predicate modal language with the modality $\Box.$

Definition

QK is the smallest set of formulas of \mathcal{L}_{\Box} containing all the substitution instances of the K-theorems, the axiom schemes

• $\forall x A \rightarrow A(y/x)$ Universal instantiation (UI)

2
$$\forall x(A
ightarrow B)
ightarrow (A
ightarrow \forall xB)$$
 with x not free in A

and closed under (MP) and

Definition

Let *L* be a propositional normal modal logic with a single modality \Box . Its *predicate extension* QL is the predicate modal logic obtained by adding to QK all the substitution instances of theorems of *L*. QS4 is the predicate extension of S4.

Kripke semantics for predicate modal logics

Definition

A predicate Kripke frame (or QK-frame) is a triple $\mathfrak{F} = (W, R, D)$ where

- W is a nonempty set whose elements are called the *worlds* of \mathfrak{F} .
- R is a binary relation on W.
- D is a function that associates to each w ∈ W a nonempty set D_w such that wRv implies D_w ⊆ D_v for each w, v ∈ W. The set D_w is called the *domain* of w.

Definition

- An interpretation of L_□ in ℑ is a function I associating to each world w and any n-ary predicate symbol P an n-ary relation I_w(P) ⊆ (D_w)ⁿ.
- A model is a pair M = (F, I) where F is a QK-frame and I is an interpretation in F.
- Assignments and x-variants are defined like for IQC-frames.

Kripke semantics for predicate modal logics

Connectives and quantifiers are interpreted like in IQC-frames except

Definition		
$\mathfrak{M} \vDash^{\sigma}_{w} B o C$	iff	if $\mathfrak{M} \vDash_{w}^{\sigma} B$, then $\mathfrak{M} \vDash_{w}^{\sigma} C$
$\mathfrak{M}\models^{\sigma}_{w}\forall xB$	iff	for each w-assignment $ au$
		that is an <i>x</i> -variant of σ , $\mathfrak{M} \vDash_{w}^{\tau} B$
$\mathfrak{M} \vDash_{w} \Box B$	iff	for all v with wRv, $\mathfrak{M} \models_{v}^{\sigma} B$

The definitions of truth in a model and validity in a frame are like in IQC.

Theorem (Gabbay 1976)

QK is sound and complete with respect to the class of predicate Kripke frames; that is, for each formula A

 $QK \vdash A$ iff $\mathfrak{F} \vDash A$ for each predicate Kripke frame \mathfrak{F} .

A QS4-frame is a QK-frame in which the relation R is reflexive and transitive (quasi-order).

Theorem (Hughes-Cresswell (1968), Schütte (1968))

QS4 is sound and complete with respect to the class of QS4 frames; that is, for each formula A

 $QS4 \vdash A$ iff $\mathfrak{F} \vDash A$ for each QS4-frame \mathfrak{F} .

 $\Box \forall x A \to \forall x \Box A$ $\forall x \Box A \to \Box \forall x A$

converse Barcan formula Barcan formula (CBF) (BF)

converse Barcan formula Barcan formula

Proposition

• $QK \vdash CBF$

 $\Box \forall x A \to \forall x \Box A$ $\forall x \Box A \to \Box \forall x A$

converse Barcan formula Barcan formula (CBF)

(BF)

Proposition

• $QK \vdash CBF$

 $\mathsf{QK} \vdash \mathsf{CBF}$

- 1. $\forall x A \rightarrow A$
- 2. $\Box(\forall xA \rightarrow A)$
- 3. $\Box \forall x A \rightarrow \Box A$
- 4. $\forall x (\Box \forall x A \rightarrow \Box A)$
- 5. $\Box \forall x A \rightarrow \forall x \Box A$

$\Box \forall xA$	\rightarrow	$\forall x \Box A$
$\forall x \Box A$	\rightarrow	$\Box \forall x A$

converse Barcan formula Barcan formula (CBF)

(BF)

Proposition

- $QK \vdash CBF$
- $\mathfrak{F} \vDash \mathsf{BF}$ iff \mathfrak{F} has constant domains, i.e. $wRv \Rightarrow D_w = D_v$.
- QK ⊭ BF
- QK + BF is complete with respect to the class of predicate Kripke frames with constant domains (Gabbay 1976)

Let $\mathcal{L}_{\mathcal{T}}$ be a predicate bimodal language with two modalities $\Box_{\mathcal{F}}$ and $\Box_{\mathcal{P}}$.

Definition

QS4.t is the smallest set of formulas of $\mathcal{L}_{\mathcal{T}}$ containing all the substitution instances of the S4.t-theorems, the axiom schemes

• $\forall xA \rightarrow A(y/x)$ Universal instantiation (UI) • $\forall x(A \rightarrow B) \rightarrow (A \rightarrow \forall xB)$ with x not free in A and closed under (MP), (Gen) and

$$\frac{A}{\Box_F A} \quad \Box_F \text{-Necessitation (N_F)} \quad \frac{A}{\Box_P A} \quad \Box_P \text{-Necessitation (N_P)}$$

 $\mathsf{QS4.t-frames}$ are $\mathsf{QS4-frames}$ with constant domains. We interpret the temporal modalities as follows

$$\mathfrak{M} \vDash_{w}^{\sigma} \Box_{F} B \quad \text{iff} \quad (\forall v \in W)(wRv \Rightarrow \mathfrak{M} \vDash_{v}^{\sigma} B) \\ \mathfrak{M} \vDash_{w}^{\sigma} \Box_{P} B \quad \text{iff} \quad (\forall v \in W)(vRw \Rightarrow \mathfrak{M} \vDash_{v}^{\sigma} B)$$

Theorem

QS4.t is sound and complete with respect to the class of QS4.t-frames.

 $\Box_{F} \forall x A \rightarrow \forall x \Box_{F} A$ $\forall x \Box_{F} A \rightarrow \Box_{F} \forall x A$ $\Box_{P} \forall x A \rightarrow \forall x \Box_{P} A$ $\forall x \Box_{P} A \rightarrow \Box_{P} \forall x A$

converse Barcan formula for \Box_F Barcan formula for \Box_F converse Barcan formula for \Box_P Barcan formula for \Box_P (CBF_F) (BF_F) (CBF_P) (BF_P)

 $\Box_{F}\forall xA \rightarrow \forall x\Box_{F}A$ $\forall x\Box_{F}A \rightarrow \Box_{F}\forall xA$ $\Box_{P}\forall xA \rightarrow \forall x\Box_{P}A$ $\forall x\Box_{P}A \rightarrow \Box_{P}\forall xA$

converse Barcan formula for \Box_F Barcan formula for \Box_F converse Barcan formula for \Box_P Barcan formula for \Box_P (CBF_F) (BF_F) (CBF_P) (BF_P)

Proposition

• $QS4.t \vdash CBF_F, CBF_P$

 $\Box_F \forall x A \to \forall x \Box_F A$ $\forall x \Box_F A \to \Box_F \forall x A$ $\Box_P \forall x A \to \forall x \Box_P A$ $\forall x \Box_P A \to \Box_P \forall x A$

converse Barcan formula for \Box_F Barcan formula for \Box_F converse Barcan formula for \Box_P Barcan formula for \Box_P

Proposition

• QS4.t \vdash CBF_F, CBF_P

 $\mathsf{QS4.t} \vdash \mathsf{CBF}_\mathsf{F}$

- 1. $\forall x A \rightarrow A$
- 2. $\Box_F(\forall x A \rightarrow A)$
- 3. $\Box_F \forall x A \rightarrow \Box_F A$
- 4. $\forall x (\Box_F \forall x A \rightarrow \Box_F A)$
- 5. $\Box_F \forall x A \rightarrow \forall x \Box_F A$

 $QS4.t \vdash CBF_P$

- 1. $\forall x A \rightarrow A$
- 2. $\Box_P(\forall xA \to A)$
- 3. $\Box_P \forall x A \rightarrow \Box A$
- 4. $\forall x (\Box_P \forall x A \rightarrow \Box_P A)$
- 5. $\Box_P \forall x A \to \forall x \Box_P A$

 $\Box_{F}\forall xA \rightarrow \forall x\Box_{F}A$ $\forall x\Box_{F}A \rightarrow \Box_{F}\forall xA$ $\Box_{P}\forall xA \rightarrow \forall x\Box_{P}A$ $\forall x\Box_{P}A \rightarrow \Box_{P}\forall xA$

converse Barcan formula for \Box_F Barcan formula for \Box_F converse Barcan formula for \Box_P Barcan formula for \Box_P (CBF_F) (BF_F) (CBF_P) (BF_P)

Proposition

- $QS4.t \vdash CBF_F, CBF_P$
- $QS4.t \vdash BF_F, BF_P$

 $\mathsf{QS4.t} \vdash \mathsf{BF}_\mathsf{F}$

1. $\forall xB \rightarrow B$

2.
$$\Box_P(\forall xB \to B)$$

- 3. $\Box_P(\forall xB \to B) \to (\Diamond_P \forall xB \to \Diamond_P B)$
- $4. \qquad \Diamond_P \forall x B \to \Diamond_P B$
- 5. $\forall x (\Diamond_P \forall x B \rightarrow \forall x \Diamond_P B)$
- $6. \qquad \Diamond_P \forall x B \to \forall x \Diamond_P B$
- 7. $\forall x \Box_F A \rightarrow \Box_F \Diamond_P \forall x \Box_F A$
- 8. $\Diamond_P \forall x \Box_F A \to \forall x \Diamond_P \Box_F A$
- 9. $\Box_F \Diamond_P \forall x \Box_F A \to \Box_F \forall x \Diamond_P \Box_F A$
- 10. $\Diamond_P \Box_F A \to A$
- 11. $\forall x \Diamond_P \Box_F A \rightarrow \forall x A$
- 12. $\Box_F \forall x \Diamond_P \Box_F A \rightarrow \Box_F \forall x A$
- 13. $\forall x \Box_F A \rightarrow \Box_F \forall x A$

 $\mathsf{QS4.t} \vdash \mathsf{BF}_\mathsf{P}$

1. $\forall xB \rightarrow B$

2.
$$\Box_F(\forall xB \to B)$$

- 3. $\Box_F(\forall xB \to B) \to (\Diamond_F \forall xB \to \Diamond_F B)$
- 4. $\Diamond_F \forall x B \rightarrow \Diamond_F B$
- 5. $\forall x (\Diamond_F \forall x B \rightarrow \forall x \Diamond_F B)$
- $6. \qquad \Diamond_F \forall x B \to \forall x \Diamond_F B$
- 7. $\forall x \Box_P A \to \Box_P \Diamond_F \forall x \Box_P A$
- 8. $\Diamond_F \forall x \Box_P A \to \forall x \Diamond_F \Box_P A$
- 9. $\Box_P \Diamond_F \forall x \Box_P A \to \Box_P \forall x \Diamond_F \Box_P A$
- 10. $\Diamond_F \Box_P A \to A$
- 11. $\forall x \Diamond_F \Box_P A \rightarrow \forall x A$
- 12. $\Box_P \forall x \Diamond_F \Box_P A \rightarrow \Box_P \forall x A$
- 13. $\forall x \Box_P A \rightarrow \Box_P \forall x A$

$\forall x(A \lor B) \rightarrow (A \lor \forall xB)$ with x not free in A

(CD)

Proposition

- Let $\mathfrak F$ be an IQC-frame. $\mathfrak F \vdash \mathsf{CD}$ iff $\mathfrak F$ has constant domains.
- IQC ⊬ CD
- QS4.t ⊢ (CD)^{*t*}

Therefore, QS4.t is **not** the right candidate to be the target of our temporal translation.

We are looking for a tense predicate logic that does not prove BF_F and CBF_P because we do not want constant domains.

Notice that the QS4.t-proofs of CBF_F , CBF_P , BF_F , BF_P all use the universal instantiation axiom. So we replace the universal instantiation axiom by its weaker version

$$\forall y (\forall x A \to A(y/x))$$

History

- Kripke (1963) was the first to considered the weak universal instantiation axiom. His goal was to have a predicate modal logic that did not prove either CBF nor BF. He also gave a semantics for this logic. In these frames the variables are interpreted in the the union of all the domains. He did not prove completeness.
- Hughes and Cresswell (1996) introduced a similar predicate modal logic and proved its completeness with respect to a generalized Kripke semantics.
- Fitting and Mendelsohn (1998) gave an alternate axiomatization of this logic.
- Corsi (2002) defined the system Q°K. She proved completeness with respect to a generalized Kripke semantics. Each world of a frame has two associated domains, an inner and an outer one. She also proved completeness of Q°K + CBF and Q°K + CBF + BF.

The logic $Q^{\circ}K$ is the least set of formulas of \mathcal{L}_{\Box} containing all the substitution instances of *K*-theorems, the axiom schemes

 (UI°)

- - $A \rightarrow \forall xA$ with x not free in A

and closed under (MP), (Gen), and (N).

Remark

Replacing (UI $^{\circ}$) with (UI) gives an axiomatization of QK.

A generalized Kripke frame is a quadruple $\mathfrak{F} = (W, R, D, U)$ where

- W is a nonempty set whose elements are called the *worlds* of \mathfrak{F} .
- R is a binary relation on W.
- D is a function that associates to each w ∈ W a set D_w. The set D_w is called the *inner domain* of w.
- U is a function that associates to each $w \in W$ a nonempty set U_w such that $D_w \subseteq U_w$ and wRv implies $U_w \subseteq U_v$. The set U_w is called the *outer domain* of w.

- An interpretation of L_□ in ℑ is a function I associating to each world w and an n-ary predicate symbol P an n-ary relation I_w(P) ⊆ (U_w)ⁿ.
- A model is a pair M = (F, I) where F is a frame and I is an interpretation in F.
- A *w*-assignment in \mathfrak{F} is a function σ that associates to each individual variable an element of U_w .
- If σ and τ are two w-assignments and x is an individual variable, τ is said to be an x-variant of σ if τ(y) = σ(y) for all y ≠ x.
- We say that a w-assignment σ is w-inner for w ∈ W if σ(x) ∈ D_w for each individual variable x.

The connectives are interpreted like in QK-frames and

Definition			
	$\mathfrak{M}\models^{\sigma}_{w}\exists xB$ $\mathfrak{M}\models^{\sigma}_{w}\forall xB$	iff iff	for some x-variant τ of σ with $\tau(x) \in D_w$, $\mathfrak{M} \vDash_w^{\tau} B$ for all x-variants τ of σ with $\tau(x) \in D_w$, $\mathfrak{M} \vDash_w^{\tau} B$

The definitions of truth in a model and validity in a frame coincide with the ones for QK-frames.

Theorem (Corsi 2002)

 $Q^\circ \mathsf{K}$ is sound and complete with respect to this semantics.

CBF, BF, NID and UI in Q°K-frames

 $\Box \forall x A \rightarrow \forall x \Box A$ (CBF) increasing inner domains $w R v \Rightarrow D_w \subseteq D_v$ $\forall x \Box A \rightarrow \Box \forall x A$ (BF) decreasing inner domains $wRv \Rightarrow D_v \subseteq D_w$ $\forall x A \to A \qquad (\mathsf{NID})$ nonempty inner domains $D_w \neq \emptyset$ with x not free in A $\forall x A \rightarrow A(y/x)$ (UI) $D_w = U_w$ inner=outer Theorem (Corsi 2002) $Q^{\circ}K + NID$, $Q^{\circ}K + CBF(+NID)$, and $Q^{\circ}K + CBF + BF(+NID)$ are sound and complete with respect to the relative classes of generalized frames.

Completeness of $Q^{\circ}K + BF$ is an open problem.

The logic Q°S4.t is the least set of formulas of $\mathcal{L}_\mathcal{T}$ containing all the substitution instances of the S4.t-axioms, the axiom schemes

	(UI°)
• $A \rightarrow \forall xA$ with x not free in A	
3 $\forall x A \rightarrow A$ with x not free in A	(NID)
	(CBF _F)
and closed under (MP). (Gen). (N_{E}). and (N_{P}).	

A Q°S4.t-frame is a generalized Kripke frame $\mathfrak{F} = (W, R, D, U)$ such that

- R is a quasi-order on W.
- The inner domains are nonempty and increasing
- U_w is the same for all w ∈ W. We denote it with U and we call it the *outer domain* of 𝔅.

Interpretations, models, assignments are the defined like for $Q^{\circ}K$. Since the outer domain is the same for each world, we say assignments instead of *w*-assignments.

Generalized Kripke semantics for $Q^\circ S4.t$

We interpret the temporal modalities in the standard way, the other connectives and quantifiers are interpreted like in $Q^{\circ}K$ -frames.

Definition

$$\mathfrak{M} \vDash_{w}^{\sigma} \Box_{F} B \quad \text{iff} \quad (\forall v \in W)(wRv \Rightarrow \mathfrak{M} \vDash_{v}^{\sigma} B) \\ \mathfrak{M} \vDash_{w}^{\sigma} \Box_{P} B \quad \text{iff} \quad (\forall v \in W)(vRw \Rightarrow \mathfrak{M} \vDash_{v}^{\sigma} B)$$

The definitions of truth in a model and validity coincide with the ones for $\mathsf{QK}\text{-}\mathsf{frames}.$

Theorem

 $Q^\circ S4.t$ is sound with respect to the class of $Q^\circ S4.t$ -frames; that is, for each formula A

if $Q^{\circ}S4.t \vdash A$ then $\mathfrak{F} \vDash A$ for each $Q^{\circ}S4.t$ -frame \mathfrak{F} .

Completeness is still an open problem.

It is not true in general that

$$\mathsf{IQC} \vdash A \quad \Rightarrow \quad \mathsf{Q}^{\circ}\mathsf{S4.t} \vdash A^t$$

for example when A is the universal instantiation axiom. Thus, the translation is not faithful in the standard sense.

Theorem

• For any formula A in L, we have

 $\mathsf{IQC} \vdash A$ iff $\mathsf{Q}^{\circ}\mathsf{S4.t} \vdash \forall x_1 \cdots \forall x_n A^t$

where x_1, \ldots, x_n are the free variables in A.

• If A is a sentence, then

 $IQC \vdash A$ iff $Q^{\circ}S4.t \vdash A^{t}$.

If A contains constants, they first need to be replaced with fresh variables.

$$\mathsf{IQC} \vdash A \quad \Rightarrow \quad \mathsf{Q}^{\circ}\mathsf{S4.t} \vdash \forall x_1 \cdots \forall x_n A^t$$

Faithfulness is proved syntactically by induction on the length of the IQC-proof of *A*.

$$\begin{array}{ll} (\forall x A \to A(y/x))^t &= \Box_F (\Box_F \forall x A^t \to A(y/x)^t) \\ (A(y/x) \to \exists x A)^t &= \Box_F (A(y/x)^t \to \Diamond_P \exists x A^t) \\ (\forall x (A \to B) \to (A \to \forall x B))^t \\ &= \Box_F (\Box_F \forall x \Box_F (A^t \to B^t) \to \Box_F (A^t \to \Box_F \forall x B^t)) \\ (\forall x (A \to B) \to (\exists x A \to B))^t \end{array}$$

 $= \Box_{F} (\Box_{F} \forall x \Box_{F} (A^{t} \rightarrow B^{t}) \rightarrow \Box_{F} (\Diamond_{P} \exists x A^{t} \rightarrow B^{t}))$

Lemma

If A is an instance of an axiom scheme of IQC and \mathbf{x} is the list of free variables in A, then Q°S4.t $\vdash \forall \mathbf{x} A^t$.

Lemma

Let A, B be formulas of \mathcal{L} , **x** the list of variables free in $A \to B$, **y** the list of variables free in A, and **z** the list of variables free in B. If $Q^{\circ}S4.t \vdash \forall \mathbf{x}(A \to B)^{t}$ and $Q^{\circ}S4.t \vdash \forall \mathbf{y}A^{t}$, then $Q^{\circ}S4.t \vdash \forall \mathbf{z}B^{t}$.

Lemma

Let A be a formula of \mathcal{L} , x a variable, y the list of variables free in A, and z the list of variables free in $\forall xA$. If $Q^{\circ}S4.t \vdash \forall yA^t$, then $Q^{\circ}S4.t \vdash \forall z (\forall xA)^t$.

$$\mathsf{IQC} \nvDash A \quad \Rightarrow \quad \mathsf{Q}^{\circ}\mathsf{S4.t} \nvDash \forall x_1 \cdots \forall x_n A^t$$

To prove fullness we use semantical methods. The strategy is to show that to any IQC-model \mathfrak{M} can be associated a Q°S4.t-model $\overline{\mathfrak{M}}$ such that if A is refuted in \mathfrak{M} then $\forall x_1 \cdots \forall x_n A^t$ is refuted in $\overline{\mathfrak{M}}$.

Relation between IQC-models and $Q^{\circ}S4.t$ -models

Definition

- For an IQC-frame $\mathfrak{F} = (W, R, D)$ let $\overline{\mathfrak{F}} = (W, R, D, U)$ where $U = \bigcup \{D_w \mid w \in W\}.$
- For an IQC-model $\mathfrak{M} = (\mathfrak{F}, I)$ let $\overline{\mathfrak{M}} = (\overline{\mathfrak{F}}, I)$.

Remark

- It is obvious that $\overline{\mathfrak{F}}$ is a Q°S4.t-frame.
- If *I* is an interpretation in 𝔅, then *I* is also an interpretation in 𝔅 because for each *n*-ary predicate letter *P* we have *I_w(P)* ⊆ *Dⁿ_w* ⊆ *Uⁿ*. Therefore, 𝔐 is well defined.
- The w-assignments in \mathfrak{F} are exactly the w-inner assignments in $\overline{\mathfrak{F}}$.

Lemma

- If A is a formula of \mathcal{L} , then $Q^{\circ}S4.t \vdash A^t \rightarrow \Box_F A^t$.
- Therefore, if \mathfrak{N} is a Q°S4.t-model, σ an assignment and wRv, then $\mathfrak{N} \models_w^{\sigma} A^t$ implies $\mathfrak{N} \models_v^{\sigma} A^t$.

Proposition

Let A be a formula of \mathcal{L} , $\mathfrak{M} = (\mathfrak{F}, I)$ an IQC-model based on an IQC-frame $\mathfrak{F} = (W, R, D)$, and $w \in W$.

• For each *w*-assignment σ ,

$$\mathfrak{M} \vDash_{w}^{\sigma} A$$
 iff $\overline{\mathfrak{M}} \vDash_{w}^{\sigma} A^{t}$.

• If x_1, \ldots, x_n are the free variables of A, then

 $\mathfrak{M}\vDash_{w} A$ iff $\overline{\mathfrak{M}}\vDash_{w} \forall x_{1}\cdots \forall x_{n}A^{t}$.

If $A = \exists x B$, then

 $\mathfrak{M} \vDash_{w}^{\sigma} \exists x B \text{ iff there is a } w \text{-assignment } \tau \text{ that is an } x \text{-variant of } \sigma$ such that $\mathfrak{M} \vDash_{w}^{\tau} B$

If $A = \exists x B$, then

 $\mathfrak{M} \vDash_{w}^{\sigma} \exists xB \text{ iff there is a } w \text{-assignment } \tau \text{ that is an } x \text{-variant of } \sigma$ such that $\mathfrak{M} \vDash_{w}^{\tau} B$ iff there is an assignment τ that is an x-variant of σ with $\tau(x) \in D_{w}$ such that $\overline{\mathfrak{M}} \vDash_{w}^{\tau} B^{t}$

By induction hypothesis and the correspondence between assignments on \mathfrak{F} and on $\overline{\mathfrak{F}}.$

If $A = \exists x B$, then

 $\mathfrak{M} \vDash_{w}^{\sigma} \exists xB \text{ iff there is a } w\text{-assignment } \tau \text{ that is an } x\text{-variant of } \sigma$ such that $\mathfrak{M} \vDash_{w}^{\tau} B$ iff there is an assignment τ that is an $x\text{-variant of } \sigma$ with $\tau(x) \in D_{w}$ such that $\overline{\mathfrak{M}} \vDash_{w}^{\tau} B^{t}$ iff there is $v \in W$ such that vRw and an assignment ρ that is
an $x\text{-variant of } \sigma$ with $\rho(x) \in D_{v}$ such that $\overline{\mathfrak{M}} \vDash_{v}^{\rho} B^{t}$ iff $\overline{\mathfrak{M}} \vDash_{w}^{\sigma} \Diamond_{P} \exists xB^{t}$ iff $\overline{\mathfrak{M}} \vDash_{w}^{\sigma} (\exists xB)^{t}$

By reflexivity of R, the Lemma above, and the fact that vRw implies $D_v \subseteq D_w$.

Open problems and future directions

- Completeness of Q°S4.t.
- Study of logics with weak universal instantiation axiom.
- Extending this result to intermediate logics
- Can Q°S4.t be replaced by other logics?

Thanks for your attention!