Modal operators on rings of continuous functions

Luca Carai

joint work with
Guram Bezhanishvili and Patrick J. Morandi
New Mexico State University

Nonclassical Logic Webinar
University of Denver

November 20, 2020

Introduction

- Stone duality establishes a dual equivalence between the categories of boolean algebras and Stone spaces.
$B A \longleftrightarrow$ Stone

Introduction

- Stone duality establishes a dual equivalence between the categories of boolean algebras and Stone spaces.
- Stone duality can be extended to a dual equivalence between the categories modal algebras and descriptive frames, i.e. Stone spaces with a continuous binary relation. Such a duality is called Jónsson-Tarski duality (full duality is due to Halmos, Esakia, and Goldblatt).
$B A \longleftrightarrow$ Stone
$M A \longleftrightarrow D F$

Introduction

- Often it is needed to work with the larger class of compact Hausdorff spaces.

KHaus

Introduction

- Often it is needed to work with the larger class of compact Hausdorff spaces.
- Gelfand-Naimark-Stone duality establishes a dual equivalence between the category of uniformly complete bounded archimedean ℓ-algebras and the category of compact Hausdorff spaces.
uba $\ell \longleftrightarrow$ KHaus

Introduction

- Compact Hausdorff spaces with a continuous relation are called compact Hausdorff frames.
ubal \longleftrightarrow KHaus
KHF

Introduction

- Compact Hausdorff spaces with a continuous relation are called compact Hausdorff frames.
- We want to define modal operators on bounded archimedean ℓ-algebras in order to obtain a dual equivalence with compact Hausdorff frames.
$? \longleftrightarrow K H F$

Introduction

- Compact Hausdorff spaces with a continuous relation are called compact Hausdorff frames.
- We want to define modal operators on bounded archimedean ℓ-algebras in order to obtain a dual equivalence with compact Hausdorff frames.

Outline

(1) Gelfand duality
(2) Modal extension of Gelfand duality
(3) Duality via algebras/coalgebras
(4) Consequences

Table of Contents

(1) Gelfand duality
(2) Modal extension of Gelfand duality
(3) Duality via algebras/coalgebras
(4) Consequences

Gelfand duality

- Gelfand and Naimark (1943): the category KHaus of compact Hausdorff spaces is dually equivalent to the category of commutative C^{*}-algebras.

Gelfand duality

- Gelfand and Naimark (1943): the category KHaus of compact Hausdorff spaces is dually equivalent to the category of commutative C^{*}-algebras. This gives a representation of commutative C^{*}-algebras as the rings of continuous complex-valued functions on $X \in$ KHaus.

Gelfand duality

- Gelfand and Naimark (1943): the category KHaus of compact Hausdorff spaces is dually equivalent to the category of commutative C^{*}-algebras. This gives a representation of commutative C^{*}-algebras as the rings of continuous complex-valued functions on $X \in$ KHaus.
- An alternate version of this duality was studied by Stone (1940) who characterized the rings of continuous real-valued functions on compact Hausdorff spaces. The rings studied by Stone are also called Stone rings (Banaschewski).

Gelfand duality

- Gelfand and Naimark (1943): the category KHaus of compact Hausdorff spaces is dually equivalent to the category of commutative C^{*}-algebras. This gives a representation of commutative C^{*}-algebras as the rings of continuous complex-valued functions on $X \in$ KHaus.
- An alternate version of this duality was studied by Stone (1940) who characterized the rings of continuous real-valued functions on compact Hausdorff spaces. The rings studied by Stone are also called Stone rings (Banaschewski).
- The two dualities are strictly related: complexification of Stone rings are commutative C^{*}-algebras. On the other hand, self-adjoint elements of commutative C^{*}-algebras form Stone rings.

Gelfand duality

- Gelfand and Naimark (1943): the category KHaus of compact Hausdorff spaces is dually equivalent to the category of commutative C^{*}-algebras. This gives a representation of commutative C^{*}-algebras as the rings of continuous complex-valued functions on $X \in$ KHaus.
- An alternate version of this duality was studied by Stone (1940) who characterized the rings of continuous real-valued functions on compact Hausdorff spaces. The rings studied by Stone are also called Stone rings (Banaschewski).
- The two dualities are strictly related: complexification of Stone rings are commutative C^{*}-algebras. On the other hand, self-adjoint elements of commutative C^{*}-algebras form Stone rings.
- Similar dualities were investigated by the Krein brothers, Kakutani, and Yosida (vector lattices or Riesz spaces) and later by Henriksen and Johnson.

Bounded archimedean ℓ-algebras

- We are interested in the Stone's version of this duality that utilizes continuous real-valued functions. We call it Gelfand-Naimark-Stone duality.

Bounded archimedean ℓ-algebras

- We are interested in the Stone's version of this duality that utilizes continuous real-valued functions. We call it Gelfand-Naimark-Stone duality. The axioms defining such structures are

Bounded archimedean ℓ-algebras

- We are interested in the Stone's version of this duality that utilizes continuous real-valued functions. We call it Gelfand-Naimark-Stone duality. The axioms defining such structures are
- algebraic (\mathbb{R}-algebras),

Bounded archimedean ℓ-algebras

- We are interested in the Stone's version of this duality that utilizes continuous real-valued functions. We call it Gelfand-Naimark-Stone duality. The axioms defining such structures are
- algebraic (\mathbb{R}-algebras),
- order-theoretic (lattice-ordered, bounded, archimedean),

Bounded archimedean ℓ-algebras

- We are interested in the Stone's version of this duality that utilizes continuous real-valued functions. We call it Gelfand-Naimark-Stone duality. The axioms defining such structures are
- algebraic (\mathbb{R}-algebras),
- order-theoretic (lattice-ordered, bounded, archimedean),
- analytic (uniformly complete).

Bounded archimedean ℓ-algebras

- We are interested in the Stone's version of this duality that utilizes continuous real-valued functions. We call it Gelfand-Naimark-Stone duality. The axioms defining such structures are
- algebraic (\mathbb{R}-algebras),
- order-theoretic (lattice-ordered, bounded, archimedean),
- analytic (uniformly complete).
- By dropping the analytic part of the axiomatization we get the larger class of bounded archimedean ℓ-algebras introduced by Bezhanishvili, Morandi, and Olberding (2013).

Bounded archimedean ℓ-algebras

- We are interested in the Stone's version of this duality that utilizes continuous real-valued functions. We call it Gelfand-Naimark-Stone duality. The axioms defining such structures are
- algebraic (\mathbb{R}-algebras),
- order-theoretic (lattice-ordered, bounded, archimedean),
- analytic (uniformly complete).
- By dropping the analytic part of the axiomatization we get the larger class of bounded archimedean ℓ-algebras introduced by Bezhanishvili, Morandi, and Olberding (2013).
- Many rings of real-valued functions are examples of bounded archimedean ℓ-algebras (continuous, piecewise constant, and piecewise polynomial).

Bounded archimedean ℓ-algebras

- We are interested in the Stone's version of this duality that utilizes continuous real-valued functions. We call it Gelfand-Naimark-Stone duality. The axioms defining such structures are
- algebraic (\mathbb{R}-algebras),
- order-theoretic (lattice-ordered, bounded, archimedean),
- analytic (uniformly complete).
- By dropping the analytic part of the axiomatization we get the larger class of bounded archimedean ℓ-algebras introduced by Bezhanishvili, Morandi, and Olberding (2013).
- Many rings of real-valued functions are examples of bounded archimedean ℓ-algebras (continuous, piecewise constant, and piecewise polynomial). Stone rings correspond to the uniformly complete bounded archimedean ℓ-algebras.

ℓ-algebras

Definition

Let A be commutative ring with 1 together with a partial order \leq. It is an ℓ-algebra (that is, a lattice-ordered \mathbb{R}-algebra) if

ℓ-algebras

Definition

Let A be commutative ring with 1 together with a partial order \leq. It is an ℓ-algebra (that is, a lattice-ordered \mathbb{R}-algebra) if

- A is a lattice,

ℓ-algebras

Definition

Let A be commutative ring with 1 together with a partial order \leq. It is an ℓ-algebra (that is, a lattice-ordered \mathbb{R}-algebra) if

- A is a lattice,
- $a \leq b$ implies $a+c \leq b+c$ for each c (ℓ-group),

ℓ-algebras

Definition

Let A be commutative ring with 1 together with a partial order \leq. It is an ℓ-algebra (that is, a lattice-ordered \mathbb{R}-algebra) if

- A is a lattice,
- $a \leq b$ implies $a+c \leq b+c$ for each c (ℓ-group),
- $0 \leq a, b$ implies $0 \leq a b$ (ℓ-ring),

ℓ-algebras

Definition

Let A be commutative ring with 1 together with a partial order \leq. It is an ℓ-algebra (that is, a lattice-ordered \mathbb{R}-algebra) if

- A is a lattice,
- $a \leq b$ implies $a+c \leq b+c$ for each c (ℓ-group),
- $0 \leq a, b$ implies $0 \leq a b$ (ℓ-ring),
- A is an \mathbb{R}-algebra,

ℓ-algebras

Definition

Let A be commutative ring with 1 together with a partial order \leq. It is an ℓ-algebra (that is, a lattice-ordered \mathbb{R}-algebra) if

- A is a lattice,
- $a \leq b$ implies $a+c \leq b+c$ for each c (ℓ-group),
- $0 \leq a, b$ implies $0 \leq a b$ (ℓ-ring),
- A is an \mathbb{R}-algebra,
- $0 \leq a \in A$ and $0 \leq \lambda \in \mathbb{R}$ imply $0 \leq \lambda \cdot a$.

Bounded archimedean ℓ-algebras

Definition
Let A be an ℓ-algebra.

Bounded archimedean ℓ-algebras

Definition
Let A be an ℓ-algebra.

- A is bounded if for each $a \in A$ there is $n \in \mathbb{N}$ such that $a \leq n \cdot 1$ (that is, 1 is a strong order unit).

Bounded archimedean ℓ-algebras

Definition

Let A be an ℓ-algebra.

- A is bounded if for each $a \in A$ there is $n \in \mathbb{N}$ such that $a \leq n \cdot 1$ (that is, 1 is a strong order unit).
- A is archimedean if for each $a, b \in A$, whenever $n \cdot a \leq b$ for each $n \in \mathbb{N}$, then $a \leq 0$.

Bounded archimedean ℓ-algebras

Definition

Let A be an ℓ-algebra.

- A is bounded if for each $a \in A$ there is $n \in \mathbb{N}$ such that $a \leq n \cdot 1$ (that is, 1 is a strong order unit).
- A is archimedean if for each $a, b \in A$, whenever $n \cdot a \leq b$ for each $n \in \mathbb{N}$, then $a \leq 0$.
- Let bal be the category of bounded archimedean ℓ-algebras and unital ℓ-algebra homomorphisms.

From KHaus to bal: ring of continuous functions $C(X)$

Definition

- Let X be a compact Hausdorff space.

We denote by $C(X)$ the set of continuous real-valued functions on X.

From KHaus to bal: ring of continuous functions $C(X)$

Definition

- Let X be a compact Hausdorff space.

We denote by $C(X)$ the set of continuous real-valued functions on X. $C(X)$ is a bounded archimedean ℓ-algebra.

From KHaus to bal: ring of continuous functions $C(X)$

Definition

- Let X be a compact Hausdorff space.

We denote by $C(X)$ the set of continuous real-valued functions on X. $C(X)$ is a bounded archimedean ℓ-algebra.

- bounded because X is compact,

From KHaus to bal: ring of continuous functions $C(X)$

Definition

- Let X be a compact Hausdorff space.

We denote by $C(X)$ the set of continuous real-valued functions on X. $C(X)$ is a bounded archimedean ℓ-algebra.

- bounded because X is compact,
- archimedean because \mathbb{R} is archimedean (no infinitesimals).

From KHaus to bal: ring of continuous functions $C(X)$

Definition

- Let X be a compact Hausdorff space.

We denote by $C(X)$ the set of continuous real-valued functions on X. $C(X)$ is a bounded archimedean ℓ-algebra.

- bounded because X is compact,
- archimedean because \mathbb{R} is archimedean (no infinitesimals).
- Let $f: X \rightarrow Y$ be a continuous function. If $g \in C(Y)$, then $C(f)(g):=g \circ f \in C(X)$.

From KHaus to bal: ring of continuous functions $C(X)$

Definition

- Let X be a compact Hausdorff space.

We denote by $C(X)$ the set of continuous real-valued functions on X. $C(X)$ is a bounded archimedean ℓ-algebra.

- bounded because X is compact,
- archimedean because \mathbb{R} is archimedean (no infinitesimals).
- Let $f: X \rightarrow Y$ be a continuous function.

If $g \in C(Y)$, then $C(f)(g):=g \circ f \in C(X)$.
This defines a contravariant functor $C:$ KHaus $\rightarrow \boldsymbol{b} \boldsymbol{\ell} \ell$.

From bal to KHaus: the Yosida space

Definition

Let $A \in \boldsymbol{b a} \boldsymbol{\ell}$.

- A subset $I \subseteq A$ is called an ℓ-ideal if

From bal to KHaus: the Yosida space

Definition

Let $A \in \boldsymbol{b a} \boldsymbol{\ell}$.

- A subset $I \subseteq A$ is called an ℓ-ideal if
- l is a ring-theoretic ideal of A,

From bal to KHaus: the Yosida space

Definition

Let $A \in \boldsymbol{b a} \boldsymbol{\ell}$.

- A subset $I \subseteq A$ is called an ℓ-ideal if
- l is a ring-theoretic ideal of A,
- if $b \in I$ and $|a| \leq|b|$ then $a \in I$. Where $|a|=a \vee(-a)$.

From bal to KHaus: the Yosida space

Definition

Let $A \in \boldsymbol{b a} \boldsymbol{\ell}$.

- A subset $I \subseteq A$ is called an ℓ-ideal if
- l is a ring-theoretic ideal of A,
- if $b \in I$ and $|a| \leq|b|$ then $a \in I$. Where $|a|=a \vee(-a)$.
- A proper ℓ-ideal maximal wrt subset inclusion is called a maximal ℓ-ideal.
The set of maximal ℓ-ideals of A is denoted by Y_{A}.

From bal to KHaus: the Yosida space

Definition

Let $A \in \boldsymbol{b a} \boldsymbol{\ell}$.

- A subset $I \subseteq A$ is called an ℓ-ideal if
- l is a ring-theoretic ideal of A,
- if $b \in I$ and $|a| \leq|b|$ then $a \in I$. Where $|a|=a \vee(-a)$.
- A proper ℓ-ideal maximal wrt subset inclusion is called a maximal ℓ-ideal.
The set of maximal ℓ-ideals of A is denoted by Y_{A}.
- Y_{A} and can be endowed with a topology whose closed subsets are $Z_{\ell}(I):=\left\{x \in Y_{A} \mid I \subseteq x\right\}$ for each ℓ-ideal I.

From bal to KHaus: the Yosida space

Definition

Let $A \in \boldsymbol{b a} \boldsymbol{\ell}$.

- A subset $I \subseteq A$ is called an ℓ-ideal if
- l is a ring-theoretic ideal of A,
- if $b \in I$ and $|a| \leq|b|$ then $a \in I$. Where $|a|=a \vee(-a)$.
- A proper ℓ-ideal maximal wrt subset inclusion is called a maximal ℓ-ideal.
The set of maximal ℓ-ideals of A is denoted by Y_{A}.
- Y_{A} and can be endowed with a topology whose closed subsets are $Z_{\ell}(I):=\left\{x \in Y_{A} \mid I \subseteq x\right\}$ for each ℓ-ideal I. Y_{A} is called the Yosida space of A and it is compact Hausdorff.

From bal to KHaus: the Yosida space

Definition

Let $A \in \boldsymbol{b a} \boldsymbol{\ell}$.

- A subset $I \subseteq A$ is called an ℓ-ideal if
- I is a ring-theoretic ideal of A,
- if $b \in I$ and $|a| \leq|b|$ then $a \in I$. Where $|a|=a \vee(-a)$.
- A proper ℓ-ideal maximal wrt subset inclusion is called a maximal ℓ-ideal.
The set of maximal ℓ-ideals of A is denoted by Y_{A}.
- Y_{A} and can be endowed with a topology whose closed subsets are $Z_{\ell}(I):=\left\{x \in Y_{A} \mid I \subseteq x\right\}$ for each ℓ-ideal I. Y_{A} is called the Yosida space of A and it is compact Hausdorff.
- Let $\alpha: A \rightarrow B$ be a unital ℓ-algebra homomorphism. The inverse image $\alpha^{-1}: Y_{B} \rightarrow Y_{A}$ is a well-defined continuous function.

From bal to KHaus: the Yosida space

Definition

Let $A \in \boldsymbol{b a} \boldsymbol{\ell}$.

- A subset $I \subseteq A$ is called an ℓ-ideal if
- I is a ring-theoretic ideal of A,
- if $b \in I$ and $|a| \leq|b|$ then $a \in I$. Where $|a|=a \vee(-a)$.
- A proper ℓ-ideal maximal wrt subset inclusion is called a maximal ℓ-ideal.
The set of maximal ℓ-ideals of A is denoted by Y_{A}.
- Y_{A} and can be endowed with a topology whose closed subsets are $Z_{\ell}(I):=\left\{x \in Y_{A} \mid I \subseteq x\right\}$ for each ℓ-ideal I. Y_{A} is called the Yosida space of A and it is compact Hausdorff.
- Let $\alpha: A \rightarrow B$ be a unital ℓ-algebra homomorphism. The inverse image $\alpha^{-1}: Y_{B} \rightarrow Y_{A}$ is a well-defined continuous function.
This defines a contravariant functor $Y:$ bal \rightarrow KHaus.

Uniformly complete bounded archimedean ℓ-algebras

Definition

- We can define a norm on each $A \in \boldsymbol{b a} \boldsymbol{\ell}$ by

$$
\|a\|=\inf \{\lambda \in \mathbb{R}| | a \mid \leq \lambda \cdot 1\}
$$

Uniformly complete bounded archimedean ℓ-algebras

Definition

- We can define a norm on each $A \in \boldsymbol{b a} \boldsymbol{\ell}$ by

$$
\|a\|=\inf \{\lambda \in \mathbb{R}| | a \mid \leq \lambda \cdot 1\}
$$

It is well-defined because A is bounded, and

Uniformly complete bounded archimedean ℓ-algebras

Definition

- We can define a norm on each $A \in \boldsymbol{b a} \boldsymbol{\ell}$ by

$$
\|a\|=\inf \{\lambda \in \mathbb{R}| | a \mid \leq \lambda \cdot 1\}
$$

It is well-defined because A is bounded, and it is a norm because A is archimedean.

Uniformly complete bounded archimedean ℓ-algebras

Definition

- We can define a norm on each $A \in \boldsymbol{b} \boldsymbol{Q} \ell$ by

$$
\|a\|=\inf \{\lambda \in \mathbb{R}| | a \mid \leq \lambda \cdot 1\} .
$$

It is well-defined because A is bounded, and it is a norm because A is archimedean.

- We say that $\boldsymbol{A} \in \boldsymbol{b} \boldsymbol{a} \boldsymbol{\ell}$ is uniformly complete if it is complete with respect to $\|\cdot\|$.

Uniformly complete bounded archimedean ℓ-algebras

Definition

- We can define a norm on each $A \in \boldsymbol{b} \boldsymbol{Q} \ell$ by

$$
\|a\|=\inf \{\lambda \in \mathbb{R}| | a \mid \leq \lambda \cdot 1\}
$$

It is well-defined because A is bounded, and it is a norm because A is archimedean.

- We say that $A \in \boldsymbol{b} \boldsymbol{a} \boldsymbol{\ell}$ is uniformly complete if it is complete with respect to $\|\cdot\|$.
- The full subcategory of bal given by its uniformly complete objects is denoted by ubal.

Uniformly complete bounded archimedean ℓ-algebras

Definition

- We can define a norm on each $A \in \boldsymbol{b a} \ell$ by

$$
\|a\|=\inf \{\lambda \in \mathbb{R}| | a \mid \leq \lambda \cdot 1\} .
$$

It is well-defined because A is bounded, and it is a norm because A is archimedean.

- We say that $A \in \boldsymbol{b} \boldsymbol{a} \boldsymbol{\ell}$ is uniformly complete if it is complete with respect to $\|\cdot\|$.
- The full subcategory of $\boldsymbol{b} \boldsymbol{a} \boldsymbol{\ell}$ given by its uniformly complete objects is denoted by ubal.

The rings of piecewise constant and piecewise polynomial functions on form two bounded archimedean ℓ-algebras that are not usually uniformly complete.

$C(X)$ is uniformly complete

This norm on $C(X)$ corresponds to the sup norm

$$
\|f\|=\sup \{|f(x)| \mid x \in X\}
$$

$C(X)$ is uniformly complete

This norm on $C(X)$ corresponds to the sup norm

$$
\|f\|=\sup \{|f(x)| \mid x \in X\}
$$

Proposition

$C(X)$ is uniformly complete for each X compact Hausdorff.

Adjunction and duality

Lemma (Stone)
Let $X \in K$ Haus.

- If $x \in X$, then $\{f \in C(X) \mid f(x)=0\}$ is a maximal ℓ-ideal of $C(X)$.

Adjunction and duality

Lemma (Stone)
Let $X \in$ KHaus .

- If $x \in X$, then $\{f \in C(X) \mid f(x)=0\}$ is a maximal ℓ-ideal of $C(X)$.
- The map $\varepsilon_{X}: X \rightarrow Y_{C(X)}$ defined by $\varepsilon_{X}(x)=\{f \in C(X) \mid f(x)=0\}$ is a homeomorphism.

Adjunction and duality: ζ_{A}

Lemma

Let $A \in \boldsymbol{b a} \boldsymbol{\ell}$.

- If x is a maximal ℓ-ideal of A, then $A / x \cong \mathbf{R}$. (Hölder)

Adjunction and duality: ζ_{A}

Lemma

Let $A \in \boldsymbol{b} \boldsymbol{a} \boldsymbol{\ell}$.

- If x is a maximal ℓ-ideal of A, then $A / x \cong \mathbf{R}$. (Hölder)
- For each $a \in A$ and $x \in Y_{A}$ we can associate the unique real number r such that $a+x=r+x$. We denote such a number by $\zeta_{A}(a)(x)$.

Adjunction and duality: ζ_{A}

Lemma

Let $A \in \boldsymbol{b} \boldsymbol{a} \boldsymbol{\ell}$.

- If x is a maximal ℓ-ideal of A, then $A / x \cong \mathbf{R}$. (Hölder)
- For each $a \in A$ and $x \in Y_{A}$ we can associate the unique real number r such that $a+x=r+x$. We denote such a number by $\zeta_{A}(a)(x)$.
- $\zeta_{A}(a): Y_{A} \rightarrow \mathbb{R}$ is a continuous function for each $a \in A$.

Adjunction and duality: ζ_{A}

Lemma

Let $A \in \boldsymbol{b} \boldsymbol{a} \boldsymbol{\ell}$.

- If x is a maximal ℓ-ideal of A, then $A / x \cong \mathbf{R}$. (Hölder)
- For each $a \in A$ and $x \in Y_{A}$ we can associate the unique real number r such that $a+x=r+x$. We denote such a number by $\zeta_{A}(a)(x)$.
- $\zeta_{A}(a): Y_{A} \rightarrow \mathbb{R}$ is a continuous function for each $a \in A$.
- The map $\zeta_{A}: A \rightarrow C\left(Y_{A}\right)$ is a 1-1 ba ℓ-morphism.

Adjunction and duality: ζ_{A}

Lemma

Let $A \in \boldsymbol{b} \boldsymbol{a} \boldsymbol{\ell}$.

- If x is a maximal ℓ-ideal of A, then $A / x \cong \mathbf{R}$. (Hölder)
- For each $a \in A$ and $x \in Y_{A}$ we can associate the unique real number r such that $a+x=r+x$. We denote such a number by $\zeta_{A}(a)(x)$.
- $\zeta_{A}(a): Y_{A} \rightarrow \mathbb{R}$ is a continuous function for each $a \in A$.
- The map $\zeta_{A}: A \rightarrow C\left(Y_{A}\right)$ is a 1-1 bal-morphism.
- ζ_{A} embeds A into the uniformly complete $C\left(Y_{A}\right)$.

Adjunction and duality: ζ_{A}

Lemma

Let $A \in \boldsymbol{b} \boldsymbol{a} \boldsymbol{\ell}$.

- If x is a maximal ℓ-ideal of A, then $A / x \cong \mathbf{R}$. (Hölder)
- For each $a \in A$ and $x \in Y_{A}$ we can associate the unique real number r such that $a+x=r+x$. We denote such a number by $\zeta_{A}(a)(x)$.
- $\zeta_{A}(a): Y_{A} \rightarrow \mathbb{R}$ is a continuous function for each $a \in A$.
- The map $\zeta_{A}: A \rightarrow C\left(Y_{A}\right)$ is a 1-1 bal-morphism.
- ζ_{A} embeds A into the uniformly complete $C\left(Y_{A}\right)$.
- Since $\zeta_{A}(A)$ separates the points of Y_{A}, it is a uniformly dense subalgebra of $C\left(Y_{A}\right)$ by the Stone-Weierstrass Theorem.

Adjunction and duality: ζ_{A}

Lemma

Let $A \in \boldsymbol{b} \boldsymbol{a} \boldsymbol{\ell}$.

- If x is a maximal ℓ-ideal of A, then $A / x \cong \mathbf{R}$. (Hölder)
- For each $a \in A$ and $x \in Y_{A}$ we can associate the unique real number r such that $a+x=r+x$. We denote such a number by $\zeta_{A}(a)(x)$.
- $\zeta_{A}(a): Y_{A} \rightarrow \mathbb{R}$ is a continuous function for each $a \in A$.
- The map $\zeta_{A}: A \rightarrow C\left(Y_{A}\right)$ is a 1-1 bal-morphism.
- ζ_{A} embeds A into the uniformly complete $C\left(Y_{A}\right)$.
- Since $\zeta_{A}(A)$ separates the points of Y_{A}, it is a uniformly dense subalgebra of $C\left(Y_{A}\right)$ by the Stone-Weierstrass Theorem.
- If A is uniformly complete, then ζ_{A} is an isomorphism.

Adjunction and duality: ζ_{A}

Lemma

Let $A \in \boldsymbol{b a} \boldsymbol{\ell}$.

- If x is a maximal ℓ-ideal of A, then $A / x \cong \mathbf{R}$. (Hölder)
- For each $a \in A$ and $x \in Y_{A}$ we can associate the unique real number r such that $a+x=r+x$. We denote such a number by $\zeta_{A}(a)(x)$.
- $\zeta_{A}(a): Y_{A} \rightarrow \mathbb{R}$ is a continuous function for each $a \in A$.
- The map $\zeta_{A}: A \rightarrow C\left(Y_{A}\right)$ is a 1-1 bal-morphism.
- ζ_{A} embeds A into the uniformly complete $C\left(Y_{A}\right)$.
- Since $\zeta_{A}(A)$ separates the points of Y_{A}, it is a uniformly dense subalgebra of $C\left(Y_{A}\right)$ by the Stone-Weierstrass Theorem.
- If A is uniformly complete, then ζ_{A} is an isomorphism.

Theorem (Representation)

Each $A \in \boldsymbol{b a} \ell$ is isomorphic to a uniformly dense subalgebra of $C(X)$ for some $X \in$ KHaus.

Adjunction and duality

Lemma

- $\varepsilon: I d_{\text {KHaus }} \rightarrow Y C$ is a natural isomorphism.

Adjunction and duality

Lemma

- $\varepsilon:$ Id $_{\text {KHaus }} \rightarrow Y C$ is a natural isomorphism.
- $\zeta:$ Id $_{\text {bal }} \rightarrow C Y$ is a natural transformation.

Adjunction and duality

Lemma

- $\varepsilon: I d_{\text {KHaus }} \rightarrow Y C$ is a natural isomorphism.
- $\zeta:$ Id $_{\text {bal }} \rightarrow C Y$ is a natural transformation.

Theorem

There is a dual adjunction between bal and KHaus whose unit and counit are ε and ζ.

Adjunction and duality

Lemma

- $\varepsilon: I d_{\text {KHaus }} \rightarrow Y C$ is a natural isomorphism.
- $\zeta:$ Id $_{\text {bal }} \rightarrow C Y$ is a natural transformation.

Theorem

There is a dual adjunction between bal and KHaus whose unit and counit are ε and ζ. This adjunction restricts to a dual equivalence between ubal and KHaus.

Adjunction and duality

Lemma

- $\varepsilon:$ Id $_{\text {KHaus }} \rightarrow Y C$ is a natural isomorphism.
- $\zeta:$ Id $_{\text {bal }} \rightarrow C Y$ is a natural transformation.

Theorem

There is a dual adjunction between bal and KHaus whose unit and counit are ε and ζ. This adjunction restricts to a dual equivalence between ubal and KHaus.

$\boldsymbol{u} \mathbf{b a} \boldsymbol{\ell}$ is a reflective subcategory of bal and $C Y: \boldsymbol{b} \boldsymbol{a} \boldsymbol{\ell} \rightarrow \boldsymbol{u} \boldsymbol{b} \boldsymbol{\ell} \boldsymbol{\ell}$ is a reflector.

Table of Contents

(1) Gelfand duality

(2) Modal extension of Gelfand duality

(3) Duality via algebras/coalgebras

Continuous relations

If R is a binary relation on a set $X, x \in X$, and $A \subseteq X$, we let

Continuous relations

If R is a binary relation on a set $X, x \in X$, and $A \subseteq X$, we let

$$
R[x]=\{y \in X \mid x R y\}
$$

Continuous relations

If R is a binary relation on a set $X, x \in X$, and $A \subseteq X$, we let

$$
R[x]=\{y \in X \mid x R y\} \quad \text { and } \quad R^{-1}[A]=\{x \in X \mid \exists y \in A \text { s.t. } x R y\}
$$

Continuous relations

If R is a binary relation on a set $X, x \in X$, and $A \subseteq X$, we let

$$
R[x]=\{y \in X \mid x R y\} \quad \text { and } \quad R^{-1}[A]=\{x \in X \mid \exists y \in A \text { s.t. } x R y\}
$$

Definition

A binary relation R on a compact Hausdorff space X is said to be continuous if:

Continuous relations

If R is a binary relation on a set $X, x \in X$, and $A \subseteq X$, we let

$$
R[x]=\{y \in X \mid x R y\} \quad \text { and } \quad R^{-1}[A]=\{x \in X \mid \exists y \in A \text { s.t. } x R y\}
$$

Definition

A binary relation R on a compact Hausdorff space X is said to be continuous if:

- $R[x]$ is closed for each $x \in X$;

Continuous relations

If R is a binary relation on a set $X, x \in X$, and $A \subseteq X$, we let

$$
R[x]=\{y \in X \mid x R y\} \quad \text { and } \quad R^{-1}[A]=\{x \in X \mid \exists y \in A \text { s.t. } x R y\}
$$

Definition

A binary relation R on a compact Hausdorff space X is said to be continuous if:

- $R[x]$ is closed for each $x \in X$;
- $R^{-1}[F]$ is closed for each F closed of X;

Continuous relations

If R is a binary relation on a set $X, x \in X$, and $A \subseteq X$, we let

$$
R[x]=\{y \in X \mid x R y\} \quad \text { and } \quad R^{-1}[A]=\{x \in X \mid \exists y \in A \text { s.t. } x R y\}
$$

Definition

A binary relation R on a compact Hausdorff space X is said to be continuous if:

- $R[x]$ is closed for each $x \in X$;
- $R^{-1}[F]$ is closed for each F closed of X;
- $R^{-1}[U]$ is open for each U open of X.

Compact Hausdorff frames

Definition

- A compact Hausdorff frame is a compact Hausdorff space together with a continuous relation.

Compact Hausdorff frames

Definition

- A compact Hausdorff frame is a compact Hausdorff space together with a continuous relation.
- A map $f:(X, R) \rightarrow(Y, S)$ between compact Hausdorff frames is a p-morphism if $f(R[x])=S[f(x)]$ for each $x \in X$.

Compact Hausdorff frames

Definition

- A compact Hausdorff frame is a compact Hausdorff space together with a continuous relation.
- A map $f:(X, R) \rightarrow(Y, S)$ between compact Hausdorff frames is a p-morphism if $f(R[x])=S[f(x)]$ for each $x \in X$.
- We denote the category of compact Hausdorff frames and continuous p-morphisms with KHF.

\square_{R} on $C(X)$

A relation R on a set X induces an operator \square_{R} on $\wp(X)$.

\square_{R} on $C(X)$

A relation R on a set X induces an operator \square_{R} on $\wp(X)$. If $A \subseteq X$, then

$$
\square_{R} A=X \backslash R^{-1}[X \backslash A]=\{x \in X \mid R[x] \subseteq A\}
$$

\square_{R} on $C(X)$

A relation R on a set X induces an operator \square_{R} on $\wp(X)$. If $A \subseteq X$, then

$$
\square_{R} A=X \backslash R^{-1}[X \backslash A]=\{x \in X \mid R[x] \subseteq A\} .
$$

Subsets of X are in bijection with their characteristic functions. The characteristic function of $\square_{R} A$ associates with each $x \in X$

$$
\inf \chi_{A}(R[x])
$$

where the inf is taken in $\{0,1\}$.

\square_{R} on $C(X)$

A relation R on a set X induces an operator \square_{R} on $\wp(X)$. If $A \subseteq X$, then

$$
\square_{R} A=X \backslash R^{-1}[X \backslash A]=\{x \in X \mid R[x] \subseteq A\} .
$$

Subsets of X are in bijection with their characteristic functions. The characteristic function of $\square_{R} A$ associates with each $x \in X$

$$
\inf \chi_{A}(R[x])
$$

where the inf is taken in $\{0,1\}$.

Definition

Let $f \in C(X)$. We define

$$
\left(\square_{R} f\right)(x)= \begin{cases}\inf f(R[x]) & \text { if } R[x] \neq \emptyset \\ 1 & \text { otherwise }\end{cases}
$$

where the inf is taken in \mathbb{R}.

\square_{R} on $C(X)$

Lemma

Let $(X, R) \in K H F$ and $f \in C(X)$, then

- $\square_{R} f$ is a well-defined real-valued function on X.

\square_{R} on $C(X)$

Lemma

Let $(X, R) \in K H F$ and $f \in C(X)$, then

- $\square_{R} f$ is a well-defined real-valued function on X.
- $\square_{R} f$ is a continuous function.

\square_{R} on $C(X)$

Lemma

Let $(X, R) \in K H F$ and $f \in C(X)$, then

- $\square_{R} f$ is a well-defined real-valued function on X.
- $\square_{R} f$ is a continuous function.

Sketch of the proof: Assume R is serial, i.e. $R[x] \neq \emptyset$ for all $x \in X$.

\square_{R} on $C(X)$

Lemma

Let $(X, R) \in K H F$ and $f \in C(X)$, then

- $\square_{R} f$ is a well-defined real-valued function on X.
- $\square_{R} f$ is a continuous function.

Sketch of the proof: Assume R is serial, i.e. $R[x] \neq \emptyset$ for all $x \in X$. $\square_{R} f$ is well-defined because $R[x]$ is closed and f is continuous so $f(R[x])$ admits an inf in \mathbb{R}.

\square_{R} on $C(X)$

Lemma

Let $(X, R) \in K H F$ and $f \in C(X)$, then

- $\square_{R} f$ is a well-defined real-valued function on X.
- $\square_{R} f$ is a continuous function.

Sketch of the proof: Assume R is serial, i.e. $R[x] \neq \emptyset$ for all $x \in X$. $\square_{R} f$ is well-defined because $R[x]$ is closed and f is continuous so $f(R[x])$ admits an inf in \mathbb{R}.

We also have

- $\left(\square_{R} f\right)^{-1}(\lambda, \infty)=X \backslash R^{-1}\left[X \backslash f^{-1}(\lambda, \infty)\right]$ is open, and

\square_{R} on $C(X)$

Lemma

Let $(X, R) \in K H F$ and $f \in C(X)$, then

- $\square_{R} f$ is a well-defined real-valued function on X.
- $\square_{R} f$ is a continuous function.

Sketch of the proof: Assume R is serial, i.e. $R[x] \neq \emptyset$ for all $x \in X$. $\square_{R} f$ is well-defined because $R[x]$ is closed and f is continuous so $f(R[x])$ admits an inf in \mathbb{R}.

We also have

- $\left(\square_{R} f\right)^{-1}(\lambda, \infty)=X \backslash R^{-1}\left[X \backslash f^{-1}(\lambda, \infty)\right]$ is open, and
- $\left(\square_{R} f\right)^{-1}(-\infty, \lambda)=R^{-1}\left[f^{-1}(-\infty, \lambda)\right]$ is open.

\square_{R} on $C(X)$

Lemma

Let $(X, R) \in K H F$ and $f \in C(X)$, then

- $\square_{R} f$ is a well-defined real-valued function on X.
- $\square_{R} f$ is a continuous function.

Sketch of the proof: Assume R is serial, i.e. $R[x] \neq \emptyset$ for all $x \in X$. $\square_{R} f$ is well-defined because $R[x]$ is closed and f is continuous so $f(R[x])$ admits an inf in \mathbb{R}.

We also have

- $\left(\square_{R} f\right)^{-1}(\lambda, \infty)=X \backslash R^{-1}\left[X \backslash f^{-1}(\lambda, \infty)\right]$ is open, and
- $\left(\square_{R} f\right)^{-1}(-\infty, \lambda)=R^{-1}\left[f^{-1}(-\infty, \lambda)\right]$ is open.

Thus, $\square_{R} f$ is continuous.

∇_{R} on $C(X)$

A relation R on a set X also induces an operator \diamond_{R} on $\wp(X)$: if $A \subseteq X$, then

$$
\diamond_{R} A=R^{-1}[A]
$$

∇_{R} on $C(X)$

A relation R on a set X also induces an operator \diamond_{R} on $\wp(X)$: if $A \subseteq X$, then

$$
\diamond_{R} A=R^{-1}[A]
$$

Thus, we can define \diamond_{R} on $C(X)$ as follows

$$
\left(\diamond_{R} f\right)(x)= \begin{cases}\sup f(R[x]) & \text { if } R[x] \neq \emptyset \\ 0 & \text { otherwise }\end{cases}
$$

∇_{R} on $C(X)$

A relation R on a set X also induces an operator \diamond_{R} on $\wp(X)$: if $A \subseteq X$, then

$$
\diamond_{R} A=R^{-1}[A]
$$

Thus, we can define \diamond_{R} on $C(X)$ as follows

$$
\left(\diamond_{R} f\right)(x)= \begin{cases}\sup f(R[x]) & \text { if } R[x] \neq \emptyset \\ 0 & \text { otherwise }\end{cases}
$$

It turns out that $\diamond_{R} f=1-\square_{R}(1-f)$.

∇_{R} on $C(X)$

A relation R on a set X also induces an operator \diamond_{R} on $\wp(X)$: if $A \subseteq X$, then

$$
\diamond_{R} A=R^{-1}[A]
$$

Thus, we can define \diamond_{R} on $C(X)$ as follows

$$
\left(\diamond_{R} f\right)(x)= \begin{cases}\sup f(R[x]) & \text { if } R[x] \neq \emptyset \\ 0 & \text { otherwise }\end{cases}
$$

It turns out that $\diamond_{R} f=1-\square_{R}(1-f)$.
When R is serial, i.e. $R[x] \neq \emptyset$ for all $x \in X$, we have that

∇_{R} on $C(X)$

A relation R on a set X also induces an operator \diamond_{R} on $\wp(X)$: if $A \subseteq X$, then

$$
\diamond_{R} A=R^{-1}[A]
$$

Thus, we can define \diamond_{R} on $C(X)$ as follows

$$
\left(\diamond_{R} f\right)(x)= \begin{cases}\sup f(R[x]) & \text { if } R[x] \neq \emptyset \\ 0 & \text { otherwise }\end{cases}
$$

It turns out that $\diamond_{R} f=1-\square_{R}(1-f)$.
When R is serial, i.e. $R[x] \neq \emptyset$ for all $x \in X$, we have that

- $\left(\square_{R} f\right)(x)=\inf f(R[x])$,

∇_{R} on $C(X)$

A relation R on a set X also induces an operator \diamond_{R} on $\wp(X)$: if $A \subseteq X$, then

$$
\diamond_{R} A=R^{-1}[A]
$$

Thus, we can define \diamond_{R} on $C(X)$ as follows

$$
\left(\diamond_{R} f\right)(x)= \begin{cases}\sup f(R[x]) & \text { if } R[x] \neq \emptyset \\ 0 & \text { otherwise }\end{cases}
$$

It turns out that $\diamond_{R} f=1-\square_{R}(1-f)$.
When R is serial, i.e. $R[x] \neq \emptyset$ for all $x \in X$, we have that

- $\left(\square_{R} f\right)(x)=\inf f(R[x])$,
- $\left(\diamond_{R} f\right)(x)=\sup f(R[x])$,

∇_{R} on $C(X)$

A relation R on a set X also induces an operator \diamond_{R} on $\wp(X)$: if $A \subseteq X$, then

$$
\diamond_{R} A=R^{-1}[A]
$$

Thus, we can define \diamond_{R} on $C(X)$ as follows

$$
\left(\diamond_{R} f\right)(x)= \begin{cases}\sup f(R[x]) & \text { if } R[x] \neq \emptyset \\ 0 & \text { otherwise }\end{cases}
$$

It turns out that $\diamond_{R} f=1-\square_{R}(1-f)$.
When R is serial, i.e. $R[x] \neq \emptyset$ for all $x \in X$, we have that

- $\left(\square_{R} f\right)(x)=\inf f(R[x])$,
- $\left(\diamond_{R} f\right)(x)=\sup f(R[x])$,
- $\diamond_{R} f=-\square_{R}(-f)$.

From continuous relations to modal operators

If R is a partial order on X and $f \in C(X)$, then

From continuous relations to modal operators

If R is a partial order on X and $f \in C(X)$, then $\square_{R} f$ is the greatest increasing function below f,

From continuous relations to modal operators

If R is a partial order on X and $f \in C(X)$, then $\square_{R} f$ is the greatest increasing function below f, $\diamond_{R} f$ the least decreasing function above f.

Properties of \square_{R}

Let (X, R) be a compact Hausdorff frame, $f, g \in C(X)$, and $\lambda \in \mathbb{R}$. If R is serial, then $\square_{R} 0=0$ so

Properties of \square_{R}

Let (X, R) be a compact Hausdorff frame, $f, g \in C(X)$, and $\lambda \in \mathbb{R}$. If R is serial, then $\square_{R} 0=0$ so
(1) $\square_{R}(f \wedge g)=\square_{R} f \wedge \square_{R} g$.

Properties of \square_{R}

Let (X, R) be a compact Hausdorff frame, $f, g \in C(X)$, and $\lambda \in \mathbb{R}$. If R is serial, then $\square_{R} 0=0$ so
(1) $\square_{R}(f \wedge g)=\square_{R} f \wedge \square_{R} g$.
(2) $\square_{R} \lambda=\lambda$.

Properties of \square_{R}

Let (X, R) be a compact Hausdorff frame, $f, g \in C(X)$, and $\lambda \in \mathbb{R}$. If R is serial, then $\square_{R} 0=0$ so
(1) $\square_{R}(f \wedge g)=\square_{R} f \wedge \square_{R} g$.
(2) $\square_{R} \lambda=\lambda$.
(3) $\square_{R}\left(f^{+}\right)=\left(\square_{R} f\right)^{+}$.

Properties of \square_{R}

Let (X, R) be a compact Hausdorff frame, $f, g \in C(X)$, and $\lambda \in \mathbb{R}$. If R is serial, then $\square_{R} 0=0$ so
(1) $\square_{R}(f \wedge g)=\square_{R} f \wedge \square_{R} g$.
(2) $\square_{R} \lambda=\lambda$.
(3) $\square_{R}\left(f^{+}\right)=\left(\square_{R} f\right)^{+}$.
(4) $\square_{R}(f+\lambda)=\square_{R} f+\lambda$.

Properties of \square_{R}

Let (X, R) be a compact Hausdorff frame, $f, g \in C(X)$, and $\lambda \in \mathbb{R}$. If R is serial, then $\square_{R} 0=0$ so
(1) $\square_{R}(f \wedge g)=\square_{R} f \wedge \square_{R} g$.
(2) $\square_{R} \lambda=\lambda$.
(3) $\square_{R}\left(f^{+}\right)=\left(\square_{R} f\right)^{+}$.
(4) $\square_{R}(f+\lambda)=\square_{R} f+\lambda$.
(6) If $0 \leq \lambda$, then $\square_{R}(\lambda f)=\lambda \square_{R} f$.

Properties of \square_{R}

Let (X, R) be a compact Hausdorff frame, $f, g \in C(X)$, and $\lambda \in \mathbb{R}$.
(1) $\square_{R}(f \wedge g)=\square_{R} f \wedge \square_{R} g$.
(2) $\square_{R} \lambda=\lambda+(1-\lambda)\left(\square_{R} 0\right)$.
(3) $\square_{R}\left(f^{+}\right)=\left(\square_{R} f\right)^{+}$.
(9) $\square_{R}(f+\lambda)=\square_{R} f+\square_{R} \lambda-\square_{R} 0$.
(6) If $0 \leq \lambda$, then $\square_{R}(\lambda f)=\left(\square_{R} \lambda\right)\left(\square_{R} f\right)$.

Modal bounded archimedean ℓ-algebras

Definition

- Let $A \in \boldsymbol{b} \boldsymbol{a} \ell$. We say that a unary function $\square: A \rightarrow A$ is a modal operator on A provided \square satisfies the following axioms for each $a, b \in A$ and $\lambda \in \mathbb{R}$:
(M1) $\square(a \wedge b)=\square a \wedge \square b$.
(M2) $\square \lambda=\lambda+(1-\lambda) \square 0$.
(M3) $\square\left(a^{+}\right)=(\square a)^{+}\left(\right.$where $\left.a^{+}=a \vee 0\right)$.
(M4) $\square(a+\lambda)=\square a+\square \lambda-\square 0$.
(M5) $\square(\lambda a)=(\square \lambda)(\square a)$ provided $\lambda \geq 0$.

Modal bounded archimedean ℓ-algebras

Definition

- Let $A \in \boldsymbol{b} \boldsymbol{a} \ell$. We say that a unary function $\square: A \rightarrow A$ is a modal operator on A provided \square satisfies the following axioms for each $a, b \in A$ and $\lambda \in \mathbb{R}$:
(M1) $\square(a \wedge b)=\square a \wedge \square b$.
(M2) $\square \lambda=\lambda+(1-\lambda) \square 0$.
(M3) $\square\left(a^{+}\right)=(\square a)^{+}\left(\right.$where $\left.a^{+}=a \vee 0\right)$.
(M4) $\square(a+\lambda)=\square a+\square \lambda-\square 0$.
(M5) $\square(\lambda a)=(\square \lambda)(\square a)$ provided $\lambda \geq 0$.
- If \square is a modal operator on $A \in \boldsymbol{b} \boldsymbol{\ell} \ell$, then we call the pair (A, \square) a modal bounded archimedean ℓ-algebra.

Modal bounded archimedean ℓ-algebras

Definition

- Let $A \in \boldsymbol{b} \boldsymbol{a} \ell$. We say that a unary function $\square: A \rightarrow A$ is a modal operator on A provided \square satisfies the following axioms for each $a, b \in A$ and $\lambda \in \mathbb{R}$:
(M1) $\square(a \wedge b)=\square a \wedge \square b$.
(M2) $\square \lambda=\lambda+(1-\lambda) \square 0$.
(M3) $\square\left(a^{+}\right)=(\square a)^{+}\left(\right.$where $\left.a^{+}=a \vee 0\right)$.
(M4) $\square(a+\lambda)=\square a+\square \lambda-\square 0$.
(M5) $\square(\lambda a)=(\square \lambda)(\square a)$ provided $\lambda \geq 0$.
- If \square is a modal operator on $\boldsymbol{A} \in \boldsymbol{b} \boldsymbol{a} \ell$, then we call the pair (A, \square) a modal bounded archimedean ℓ-algebra.
- Let mbal be the category of modal bounded archimedean ℓ-algebras and unital ℓ-algebra homomorphisms preserving \square.

Modal bounded archimedean ℓ-algebras

Definition

- Let $A \in \boldsymbol{b} \boldsymbol{a} \ell$. We say that a unary function $\square: A \rightarrow A$ is a modal operator on A provided \square satisfies the following axioms for each $a, b \in A$ and $\lambda \in \mathbb{R}$:
(M1) $\square(a \wedge b)=\square a \wedge \square b$.
(M2) $\square \lambda=\lambda+(1-\lambda) \square 0$.
(M3) $\square\left(a^{+}\right)=(\square a)^{+}\left(\right.$where $\left.a^{+}=a \vee 0\right)$.
(M4) $\square(a+\lambda)=\square a+\square \lambda-\square 0$.
(M5) $\square(\lambda a)=(\square \lambda)(\square a)$ provided $\lambda \geq 0$.
- If \square is a modal operator on $\boldsymbol{A} \in \boldsymbol{b} \boldsymbol{a} \ell$, then we call the pair (A, \square) a modal bounded archimedean ℓ-algebra.
- Let mbal be the category of modal bounded archimedean ℓ-algebras and unital ℓ-algebra homomorphisms preserving \square.
- Let mubal be the full subcategory of uniformly complete objects of mbal.

From modal operators to continuous relations

Lemma

Let $(X, R) \in$ KHF and $x, y \in X$. Then

$$
x R y \text { iff for each } f \geq 0, f(y)=0 \text {, implies }\left(\square_{R} f\right)(x)=0 \text {. }
$$

From modal operators to continuous relations

Lemma

Let $(X, R) \in \mathbf{K H F}$ and $x, y \in X$. Then

$$
x R y \text { iff for each } f \geq 0, f(y)=0 \text {, implies }\left(\square_{R} f\right)(x)=0 \text {. }
$$

Also, $\zeta_{A}(a) \in C\left(Y_{A}\right)$ vanishes exactly on the y such that $a \in y$. Indeed, $a \in y$ iff $\zeta_{A}(a)(y)=a+y=0+y$.

From modal operators to continuous relations

Lemma

Let $(X, R) \in$ KHF and $x, y \in X$. Then

$$
x R y \text { iff for each } f \geq 0, f(y)=0 \text {, implies }\left(\square_{R} f\right)(x)=0 \text {. }
$$

Also, $\zeta_{A}(a) \in C\left(Y_{A}\right)$ vanishes exactly on the y such that $a \in y$. Indeed, $a \in y$ iff $\zeta_{A}(a)(y)=a+y=0+y$.

This suggests the following definition of R_{\square} on Y_{A}.

Definition

Let $(A, \square) \in \boldsymbol{m b a} \boldsymbol{\ell}$ and $x, y \in Y_{A}$. We define $x R_{\square} y$ if for each $a \in A$

$$
a \geq 0, a \in y \text { implies } \square a \in x
$$

From modal operators to continuous relations

The family

$$
Z_{\ell}(a)=\left\{x \in Y_{A} \mid a \in x\right\} \text { where } a \in A, a \geq 0
$$

forms a basis of closed sets of Y_{A}.

From modal operators to continuous relations

The family

$$
Z_{\ell}(a)=\left\{x \in Y_{A} \mid a \in x\right\} \text { where } a \in A, a \geq 0
$$

forms a basis of closed sets of Y_{A}.
Lemma
Let $(A, \square) \in \boldsymbol{m b a} \boldsymbol{\ell}$ and $a \in A, a \geq 0$.

From modal operators to continuous relations

The family

$$
Z_{\ell}(a)=\left\{x \in Y_{A} \mid a \in x\right\} \text { where } a \in A, a \geq 0
$$

forms a basis of closed sets of Y_{A}.
Lemma
Let $(A, \square) \in \boldsymbol{m b a l}$ and $a \in A, a \geq 0$.

- $R_{\square}[x]$ is closed for each $x \in Y_{A}$.

From modal operators to continuous relations

The family

$$
Z_{\ell}(a)=\left\{x \in Y_{A} \mid a \in x\right\} \text { where } a \in A, a \geq 0
$$

forms a basis of closed sets of Y_{A}.
Lemma
Let $(A, \square) \in \boldsymbol{m b a l}$ and $a \in A, a \geq 0$.

- $R_{\square}[x]$ is closed for each $x \in Y_{A}$.
- $R_{\square}^{-1}\left[Z_{\ell}(a)\right]=Z_{\ell}(\square a)$.

From modal operators to continuous relations

The family

$$
Z_{\ell}(a)=\left\{x \in Y_{A} \mid a \in x\right\} \text { where } a \in A, a \geq 0
$$

forms a basis of closed sets of Y_{A}.
Lemma
Let $(A, \square) \in \boldsymbol{m b a l}$ and $a \in A, a \geq 0$.

- $R_{\square}[x]$ is closed for each $x \in Y_{A}$.
- $R_{\square}^{-1}\left[Z_{\ell}(a)\right]=Z_{\ell}(\square a)$.
- $R_{\square}^{-1}\left[Y_{A} \backslash Z_{\ell}(a)\right]=Y_{A} \backslash Z_{\ell}(\diamond a)$.

From modal operators to continuous relations

Lemma (Esakia Lemma)
Let $(X, R) \in K H F$. Let \mathcal{F} be a nonempty downward directed family of closed subsets of X (i.e. $\forall A, B \in \mathcal{F}, \exists C \in \mathcal{F}$ such that $C \subseteq A \cap B$). Then

$$
R^{-1} \bigcap\{F \mid F \in \mathcal{F}\}=\bigcap\left\{R^{-1}[F] \mid F \in \mathcal{F}\right\}
$$

From modal operators to continuous relations

Lemma (Esakia Lemma)

Let $(X, R) \in K H F$. Let \mathcal{F} be a nonempty downward directed family of closed subsets of X (i.e. $\forall A, B \in \mathcal{F}, \exists C \in \mathcal{F}$ such that $C \subseteq A \cap B$). Then

$$
R^{-1} \bigcap\{F \mid F \in \mathcal{F}\}=\bigcap\left\{R^{-1}[F] \mid F \in \mathcal{F}\right\}
$$

Since every closed subset of Y_{A} is intersection of a downward directed family of sets of the form $Z_{\ell}(a)$ with $a \geq 0$, the previous lemma yields

From modal operators to continuous relations

Lemma (Esakia Lemma)

Let $(X, R) \in$ KHF. Let \mathcal{F} be a nonempty downward directed family of closed subsets of X (i.e. $\forall A, B \in \mathcal{F}, \exists C \in \mathcal{F}$ such that $C \subseteq A \cap B$). Then

$$
R^{-1} \bigcap\{F \mid F \in \mathcal{F}\}=\bigcap\left\{R^{-1}[F] \mid F \in \mathcal{F}\right\}
$$

Since every closed subset of Y_{A} is intersection of a downward directed family of sets of the form $Z_{\ell}(a)$ with $a \geq 0$, the previous lemma yields

Theorem

R_{\square} is a continuous relation on Y_{A}.

Adjunction and duality

Theorem

- $C: \boldsymbol{m b a} \boldsymbol{\ell} \rightarrow$ KHF given by $C(X, R)=\left(C(X), \square_{R}\right)$ is a contravariant functor.

Adjunction and duality

Theorem

- $C: \boldsymbol{m b a} \boldsymbol{\ell} \rightarrow$ KHF given by $C(X, R)=\left(C(X), \square_{R}\right)$ is a contravariant functor.
- $Y:$ KHF \rightarrow mbal given by $Y(A, \square)=\left(Y_{A}, R_{\square}\right)$ is a contravariant functor.

Adjunction and duality

Theorem

- $C:$ mbal \rightarrow KHF given by $C(X, R)=\left(C(X), \square_{R}\right)$ is a contravariant functor.
- $Y:$ KHF \rightarrow mbal given by $Y(A, \square)=\left(Y_{A}, R_{\square}\right)$ is a contravariant functor.

Theorem
Let $(A, \square) \in \boldsymbol{m b a} \boldsymbol{\ell}$ and $(X, R) \in \boldsymbol{K H F}$.

Adjunction and duality

Theorem

- $C:$ mbal \rightarrow KHF given by $C(X, R)=\left(C(X), \square_{R}\right)$ is a contravariant functor.
- $Y:$ KHF \rightarrow mbal given by $Y(A, \square)=\left(Y_{A}, R_{\square}\right)$ is a contravariant functor.

Theorem

Let $(A, \square) \in \boldsymbol{m b a} \boldsymbol{\ell}$ and $(X, R) \in \mathbf{K H F}$.

- for each $x, y \in X$ we have $x R y$ iff $\varepsilon_{X}(x) R_{\square_{R}} \varepsilon_{X}(y)$ so $\varepsilon_{X}:(X, R) \rightarrow\left(Y_{C(X)}, R_{\square}\right)$ is an isomorphism in KHF.

Adjunction and duality

Theorem

- $C: \boldsymbol{m b a} \boldsymbol{\ell} \rightarrow$ KHF given by $C(X, R)=\left(C(X), \square_{R}\right)$ is a contravariant functor.
- $Y:$ KHF \rightarrow mbal given by $Y(A, \square)=\left(Y_{A}, R_{\square}\right)$ is a contravariant functor.

Theorem

Let $(A, \square) \in \boldsymbol{m b a l}$ and $(X, R) \in \mathbf{K H F}$.

- for each $x, y \in X$ we have $x R y$ iff $\varepsilon_{X}(x) R_{\square_{R}} \varepsilon_{X}(y)$ so $\varepsilon_{X}:(X, R) \rightarrow\left(Y_{C(X)}, R_{\square_{R}}\right)$ is an isomorphism in KHF.
- for each $a \in A$ we have $\zeta_{A}(\square a)=\square_{R_{\square}} \zeta_{A}(a)$ so $\zeta_{A}:(A, \square) \rightarrow\left(C\left(Y_{A}\right), \square_{R_{\square}}\right)$ is a modal homomorphism.

Adjunction and duality

Theorem

- $C: \boldsymbol{m b a \ell} \rightarrow$ KHF given by $C(X, R)=\left(C(X), \square_{R}\right)$ is a contravariant functor.
- $Y:$ KHF \rightarrow mbal given by $Y(A, \square)=\left(Y_{A}, R_{\square}\right)$ is a contravariant functor.

Theorem

Let $(A, \square) \in \boldsymbol{m b a} \boldsymbol{\ell}$ and $(X, R) \in \mathbf{K H F}$.

- for each $x, y \in X$ we have $x R y$ iff $\varepsilon_{X}(x) R_{\square_{R}} \varepsilon_{X}(y)$ so $\varepsilon_{X}:(X, R) \rightarrow\left(Y_{C(X)}, R_{\square_{R}}\right)$ is an isomorphism in KHF.
- for each $a \in A$ we have $\zeta_{A}(\square a)=\square_{R_{\square}} \zeta_{A}(a)$ so $\zeta_{A}:(A, \square) \rightarrow\left(C\left(Y_{A}\right), \square_{R_{\square}}\right)$ is a modal homomorphism.
- $\varepsilon: I_{K H F} \rightarrow Y C$ is a natural isomorphism.

Adjunction and duality

Theorem

- $C:$ mba $\ell \rightarrow$ KHF given by $C(X, R)=\left(C(X), \square_{R}\right)$ is a contravariant functor.
- $Y:$ KHF \rightarrow mbal given by $Y(A, \square)=\left(Y_{A}, R_{\square}\right)$ is a contravariant functor.

Theorem

Let $(A, \square) \in \boldsymbol{m b a l}$ and $(X, R) \in$ KHF.

- for each $x, y \in X$ we have $x R y$ iff $\varepsilon_{X}(x) R_{\square_{R}} \varepsilon_{X}(y)$ so $\varepsilon_{X}:(X, R) \rightarrow\left(Y_{C(X)}, R_{\square_{R}}\right)$ is an isomorphism in KHF.
- for each $a \in A$ we have $\zeta_{A}(\square a)=\square_{R_{\square}} \zeta_{A}(a)$ so $\zeta_{A}:(A, \square) \rightarrow\left(C\left(Y_{A}\right), \square_{R_{\square}}\right)$ is a modal homomorphism.
- $\varepsilon: I_{\text {KHF }} \rightarrow Y C$ is a natural isomorphism.
- $\zeta: I d_{\text {mba } \ell} \rightarrow C Y$ is a natural transformation.

Adjunction and duality

Theorem (Main theorem)

There is a dual adjunction between mbal and KHF whose unit and counit are ε and ζ.

Adjunction and duality

Theorem (Main theorem)

There is a dual adjunction between mbal and KHF whose unit and counit are ε and ζ. This adjunction restricts to a dual equivalence between mubal and KHF.

Adjunction and duality

Theorem (Main theorem)

There is a dual adjunction between mbal and KHF whose unit and counit are ε and ζ. This adjunction restricts to a dual equivalence between mubal and KHF.

mubal is a reflective subcategory of mba ℓ and $C Y: \boldsymbol{m b a} \ell \rightarrow$ muba ℓ is a reflector.

Table of Contents

(1) Gelfand duality

(2) Modal extension of Gelfand duality
(3) Duality via algebras/coalgebras

Algebras and coalgebras for an endofunctor

Definition

Let C be a category and $\mathcal{T}: \mathrm{C} \rightarrow \mathrm{C}$ an endofunctor.

Algebras and coalgebras for an endofunctor

Definition

Let C be a category and $\mathcal{T}: C \rightarrow C$ an endofunctor.

- A coalgebra for \mathcal{T} is a pair (B, g) where B is an object of C and $g: B \rightarrow \mathcal{T}(B)$ is a C-morphism.

Algebras and coalgebras for an endofunctor

Definition

Let C be a category and $\mathcal{T}: \mathrm{C} \rightarrow \mathrm{C}$ an endofunctor.

- A coalgebra for \mathcal{T} is a pair (B, g) where B is an object of C and $g: B \rightarrow \mathcal{T}(B)$ is a C-morphism.
- A morphism between two coalgebras $\left(B_{1}, g_{1}\right)$ and $\left(B_{2}, g_{2}\right)$ for \mathcal{T} is a C-morphism $\alpha: B_{1} \rightarrow B_{2}$ such that the following square is commutative.

Algebras and coalgebras for an endofunctor

Definition

Let C be a category and $\mathcal{T}: C \rightarrow C$ an endofunctor.

- A coalgebra for \mathcal{T} is a pair (B, g) where B is an object of C and $g: B \rightarrow \mathcal{T}(B)$ is a C-morphism.
- A morphism between two coalgebras $\left(B_{1}, g_{1}\right)$ and $\left(B_{2}, g_{2}\right)$ for \mathcal{T} is a C-morphism $\alpha: B_{1} \rightarrow B_{2}$ such that the following square is commutative.

- Let $\operatorname{Coalg}(\mathcal{T})$ be the category whose objects are coalgebras for \mathcal{T} and whose morphisms are morphisms of coalgebras.

Algebras and coalgebras for an endofunctor

Definition

Let C be a category and $\mathcal{T}: C \rightarrow C$ an endofunctor.

- A coalgebra for \mathcal{T} is a pair (B, g) where B is an object of C and $g: B \rightarrow \mathcal{T}(B)$ is a C-morphism.
- A morphism between two coalgebras $\left(B_{1}, g_{1}\right)$ and $\left(B_{2}, g_{2}\right)$ for \mathcal{T} is a C-morphism $\alpha: B_{1} \rightarrow B_{2}$ such that the following square is commutative.

- Let $\operatorname{Coalg}(\mathcal{T})$ be the category whose objects are coalgebras for \mathcal{T} and whose morphisms are morphisms of coalgebras.

The definition of algebras for an endofunctor is dual.

Vietoris space

Definition

Let $X \in$ KHaus and $\mathcal{V}(X)$ be the set of its closed subsets.
If U is an open subset of X consider the following subsets of $\mathcal{V}(X)$.

$$
\begin{aligned}
& \square_{U}=\{F \in \mathcal{V}(X) \mid F \subseteq U\} \\
& \diamond_{U}=\{F \in \mathcal{V}(X) \mid F \cap U \neq \varnothing\}
\end{aligned}
$$

Vietoris space

Definition

Let $X \in$ KHaus and $\mathcal{V}(X)$ be the set of its closed subsets.
If U is an open subset of X consider the following subsets of $\mathcal{V}(X)$.

$$
\begin{aligned}
\square_{U} & =\{F \in \mathcal{V}(X) \mid F \subseteq U\} \\
\diamond_{U} & =\{F \in \mathcal{V}(X) \mid F \cap U \neq \varnothing\}
\end{aligned}
$$

The Vietoris topology on $\mathcal{V}(X)$ is the topology generated by

$$
\left\{\square_{U}, \diamond_{U} \mid U \text { open in } X\right\} .
$$

Vietoris space

Definition

Let $X \in$ KHaus and $\mathcal{V}(X)$ be the set of its closed subsets.
If U is an open subset of X consider the following subsets of $\mathcal{V}(X)$.

$$
\begin{aligned}
\square_{U} & =\{F \in \mathcal{V}(X) \mid F \subseteq U\} \\
\diamond_{U} & =\{F \in \mathcal{V}(X) \mid F \cap U \neq \varnothing\}
\end{aligned}
$$

The Vietoris topology on $\mathcal{V}(X)$ is the topology generated by

$$
\left\{\square_{U}, \nabla_{U} \mid U \text { open in } X\right\}
$$

Theorem (Vietoris, Michael) If $X \in$ KHaus, then $\mathcal{V}(X) \in$ KHaus.

Vietoris space

Definition

Let $X \in$ KHaus and $\mathcal{V}(X)$ be the set of its closed subsets.
If U is an open subset of X consider the following subsets of $\mathcal{V}(X)$.

$$
\begin{aligned}
\square_{U} & =\{F \in \mathcal{V}(X) \mid F \subseteq U\} \\
\diamond_{U} & =\{F \in \mathcal{V}(X) \mid F \cap U \neq \varnothing\}
\end{aligned}
$$

The Vietoris topology on $\mathcal{V}(X)$ is the topology generated by

$$
\left\{\square_{U}, \diamond u \mid U \text { open in } X\right\} .
$$

Theorem (Vietoris, Michael)
If $X \in$ KHaus, then $\mathcal{V}(X) \in$ KHaus. Moreover, \mathcal{V} is an endofunctor on KHaus.

Coalgebras for \mathcal{V} and continuous relations

- If R is a continuous relation on $X \in$ KHaus, then $\rho: X \rightarrow \mathcal{V}(X)$ given by $\rho(x):=R[x]$ is a continuous function.

Coalgebras for \mathcal{V} and continuous relations

- If R is a continuous relation on $X \in$ KHaus, then $\rho: X \rightarrow \mathcal{V}(X)$ given by $\rho(x):=R[x]$ is a continuous function.
- If $\rho: X \rightarrow \mathcal{V}(X)$ is a continuous function, then $R[x]:=\rho(x)$ is a continuous relation.

Coalgebras for \mathcal{V} and continuous relations

- If R is a continuous relation on $X \in$ KHaus, then $\rho: X \rightarrow \mathcal{V}(X)$ given by $\rho(x):=R[x]$ is a continuous function.
- If $\rho: X \rightarrow \mathcal{V}(X)$ is a continuous function, then $R[x]:=\rho(x)$ is a continuous relation.

Theorem (Folklore)
KHF is isomorphic to Coalg(V).

Algebraic/coalgebraic point of view

Theorem

- \mathcal{V} is an endofunctor on Stone. (Michael)

Algebraic/coalgebraic point of view

Theorem

- \mathcal{V} is an endofunctor on Stone. (Michael)
- DF is isomorphic to Coalg (\mathcal{V}) over Stone.

Algebraic/coalgebraic point of view

Theorem

- \mathcal{V} is an endofunctor on Stone. (Michael)
- DF is isomorphic to Coalg (\mathcal{V}) over Stone.

Since Stone is dually equivalent to $\boldsymbol{B A}$ there is an endofunctor \mathcal{H} on $\boldsymbol{B A}$ corresponding to \mathcal{V}.

Definition

Let $A \in \boldsymbol{B A}$.

Algebraic/coalgebraic point of view

Theorem

- \mathcal{V} is an endofunctor on Stone. (Michael)
- DF is isomorphic to Coalg (\mathcal{V}) over Stone.

Since Stone is dually equivalent to $\boldsymbol{B A}$ there is an endofunctor \mathcal{H} on $\boldsymbol{B A}$ corresponding to \mathcal{V}.

Definition

Let $A \in \boldsymbol{B A}$.

- Let $F(A)$ be the free boolean algebra over the underlying set of A. Denote by \square_{a} the image of a under the natural map $A \rightarrow F(A)$.

Algebraic/coalgebraic point of view

Theorem

- \mathcal{V} is an endofunctor on Stone. (Michael)
- DF is isomorphic to Coalg (\mathcal{V}) over Stone.

Since Stone is dually equivalent to $\boldsymbol{B A}$ there is an endofunctor \mathcal{H} on $\boldsymbol{B A}$ corresponding to \mathcal{V}.

Definition

Let $A \in \boldsymbol{B A}$.

- Let $F(A)$ be the free boolean algebra over the underlying set of A. Denote by \square_{a} the image of a under the natural map $A \rightarrow F(A)$.
- Let $\mathcal{H}(A) \in \boldsymbol{B A}$ be the quotient of $F(A)$ over the relations

$$
\square_{a} \wedge \square_{b}=\square_{a \wedge b} \quad \text { and } \quad \square_{1}=1
$$

Algebraic/coalgebraic point of view

Theorem

- \mathcal{V} is an endofunctor on Stone. (Michael)
- DF is isomorphic to Coalg (\mathcal{V}) over Stone.

Since Stone is dually equivalent to $\boldsymbol{B A}$ there is an endofunctor \mathcal{H} on $\boldsymbol{B A}$ corresponding to \mathcal{V}.

Definition

Let $A \in \boldsymbol{B A}$.

- Let $F(A)$ be the free boolean algebra over the underlying set of A. Denote by \square_{a} the image of a under the natural map $A \rightarrow F(A)$.
- Let $\mathcal{H}(A) \in \boldsymbol{B A}$ be the quotient of $F(A)$ over the relations

$$
\square_{a} \wedge \square_{b}=\square_{a \wedge b} \quad \text { and } \quad \square_{1}=1
$$

- $\mathcal{H}(A)$ is the free boolean algebra over the underlying meet-semilattice of A.

Algebraic/coalgebraic point of view

Theorem (Abramsky (1988), Kupke, Kurz, and Venema (2004))

- $\operatorname{Alg}(\mathcal{H})$ is isomorphic to MA,

Algebraic/coalgebraic point of view

Theorem (Abramsky (1988), Kupke, Kurz, and Venema (2004))

- $\boldsymbol{A l g}(\mathcal{H})$ is isomorphic to MA,
- $\boldsymbol{A} \boldsymbol{\operatorname { l g }}(\mathcal{H})$ is dually equivalent to $\operatorname{Coalg}(\mathcal{V})$ over Stone.

Algebraic/coalgebraic point of view

Theorem (Abramsky (1988), Kupke, Kurz, and Venema (2004))

- $\operatorname{Alg}(\mathcal{H})$ is isomorphic to MA,
- $\boldsymbol{A} \boldsymbol{\operatorname { l g }}(\mathcal{H})$ is dually equivalent to $\operatorname{Coalg}(\mathcal{V})$ over Stone.

Indeed, the \square operators on A correspond to meet-semilattice homomorphisms from the underlying semilattice of A to itself.

Algebraic/coalgebraic point of view

Theorem (Abramsky (1988), Kupke, Kurz, and Venema (2004))

- $\operatorname{Alg}(\mathcal{H})$ is isomorphic to MA,
- $\boldsymbol{A} \boldsymbol{\operatorname { l g }}(\mathcal{H})$ is dually equivalent to $\operatorname{Coalg}(\mathcal{V})$ over Stone.

Indeed, the \square operators on A correspond to meet-semilattice homomorphisms from the underlying semilattice of A to itself.
The following diagram is commutative up to natural isomorphism

Algebraic/coalgebraic point of view

Theorem (Abramsky (1988), Kupke, Kurz, and Venema (2004))

- $\boldsymbol{A l g}(\mathcal{H})$ is isomorphic to MA,
- $\boldsymbol{A} \boldsymbol{\operatorname { l g }}(\mathcal{H})$ is dually equivalent to $\operatorname{Coalg}(\mathcal{V})$ over Stone.

Indeed, the \square operators on A correspond to meet-semilattice homomorphisms from the underlying semilattice of A to itself.
The following diagram is commutative up to natural isomorphism

This yields an alternate proof of Jónsson-Tarski duality.

Free bounded archimedean ℓ-algebras

bal is not a variety so the existence of free objects is not guaranteed.

Free bounded archimedean ℓ-algebras

bal is not a variety so the existence of free objects is not guaranteed.

Lemma

Let $A, B \in$ bal and $\alpha: A \rightarrow B$ be a bal-morphism.
Then for each $a \in A$ we have $\|\alpha(a)\| \leq\|a\|$.

Free bounded archimedean ℓ-algebras

bal is not a variety so the existence of free objects is not guaranteed.

Lemma

Let $A, B \in \boldsymbol{b a} \boldsymbol{\ell}$ and $\alpha: A \rightarrow B$ be a bal-morphism.
Then for each $a \in A$ we have $\|\alpha(a)\| \leq\|a\|$.

Proposition

Free bounded archimedean ℓ-algebras over a nonempty set X do not exist.

Free bounded archimedean ℓ-algebras

bal is not a variety so the existence of free objects is not guaranteed.

Lemma

Let $A, B \in$ bal and $\alpha: A \rightarrow B$ be a bal-morphism.
Then for each $a \in A$ we have $\|\alpha(a)\| \leq\|a\|$.

Proposition

Free bounded archimedean ℓ-algebras over a nonempty set X do not exist.
Proof (sketch): Suppose that $F(X) \in \boldsymbol{b} \boldsymbol{\ell} \ell$ is free over X.

Free bounded archimedean ℓ-algebras

bal is not a variety so the existence of free objects is not guaranteed.

```
Lemma
Let A,B 放利 \alpha:A->B be a bal-morphism.
Then for each a }\inA\mathrm{ we have | |(a)| s|a|.
```


Proposition

Free bounded archimedean ℓ-algebras over a nonempty set X do not exist.
Proof (sketch): Suppose that $F(X) \in \boldsymbol{b a} \boldsymbol{\ell}$ is free over X. Pick $x \in X$, choose $r \in \mathbb{R}$ with $r>\|x\|$, and define $g: X \rightarrow \mathbb{R}$ by setting $g(y)=r$ for each $y \in X$.

Free bounded archimedean ℓ-algebras

bal is not a variety so the existence of free objects is not guaranteed.

```
Lemma
Let A,B 放利 \alpha:A->B be a bal-morphism.
Then for each a }\inA\mathrm{ we have | |(a)| s|a|.
```


Proposition

Free bounded archimedean ℓ-algebras over a nonempty set X do not exist.
Proof (sketch): Suppose that $F(X) \in \boldsymbol{b a} \boldsymbol{\ell}$ is free over X. Pick $x \in X$, choose $r \in \mathbb{R}$ with $r>\|x\|$, and define $g: X \rightarrow \mathbb{R}$ by setting $g(y)=r$ for each $y \in X$. There is a (unique) bal-morphism $\alpha: F(X) \rightarrow \mathbb{R}$ with $\alpha_{\mid X}=g$, so $\alpha(x)=r$.

Free bounded archimedean ℓ-algebras

bal is not a variety so the existence of free objects is not guaranteed.

Lemma

Let $A, B \in$ bal and $\alpha: A \rightarrow B$ be a bal-morphism.
Then for each $a \in A$ we have $\|\alpha(a)\| \leq\|a\|$.

Proposition

Free bounded archimedean ℓ-algebras over a nonempty set X do not exist.
Proof (sketch): Suppose that $F(X) \in \boldsymbol{b} \boldsymbol{\ell} \boldsymbol{\ell}$ is free over X. Pick $x \in X$, choose $r \in \mathbb{R}$ with $r>\|x\|$, and define $g: X \rightarrow \mathbb{R}$ by setting $g(y)=r$ for each $y \in X$. There is a (unique) bal-morphism $\alpha: F(X) \rightarrow \mathbb{R}$ with $\alpha_{\mid X}=g$, so $\alpha(x)=r$. By the lemma

$$
r=\|\alpha(x)\| \leq\|x\|<r .
$$

The obtained contradiction proves that $F(X)$ does not exist.

Free bounded archimedean ℓ-algebras

We can overcome this obstacle by considering free bounded archimedean ℓ-algebras over weighted sets.

Definition

- A weight function on a set X is a function w from X into the nonnegative real numbers.

Free bounded archimedean ℓ-algebras

We can overcome this obstacle by considering free bounded archimedean ℓ-algebras over weighted sets.

Definition

- A weight function on a set X is a function w from X into the nonnegative real numbers.
- A weighted set is a pair (X, w) where X is a set and w is a weight function on X.

Free bounded archimedean ℓ-algebras

We can overcome this obstacle by considering free bounded archimedean ℓ-algebras over weighted sets.

Definition

- A weight function on a set X is a function w from X into the nonnegative real numbers.
- A weighted set is a pair (X, w) where X is a set and w is a weight function on X.
- Let WSet be the category whose objects are weighted sets and whose morphisms are functions $f:\left(X_{1}, w_{1}\right) \rightarrow\left(X_{2}, w_{2}\right)$ satisfying $w_{2}(f(x)) \leq w_{1}(x)$ for each $x \in X$.

Free bounded archimedean ℓ-algebras

If $A \in \boldsymbol{b} \boldsymbol{a} \boldsymbol{\ell}$, then $(A,\|\cdot\|) \in \boldsymbol{W} \boldsymbol{S} \boldsymbol{e} \boldsymbol{t}$ and any morphism in $\boldsymbol{b} \boldsymbol{a} \boldsymbol{\ell}$ is a morphism in WSet. Therefore, there is a forgetful functor $U: \boldsymbol{b} \boldsymbol{a} \ell \rightarrow$ WSet .

Free bounded archimedean ℓ-algebras

If $A \in \boldsymbol{b} \boldsymbol{a} \boldsymbol{\ell}$, then $(A,\|\cdot\|) \in \boldsymbol{W} \boldsymbol{S} \boldsymbol{e} \boldsymbol{t}$ and any morphism in $\boldsymbol{b} \boldsymbol{a} \boldsymbol{\ell}$ is a morphism in WSet. Therefore, there is a forgetful functor $U:$ bal \rightarrow WSet.

Theorem

U has a left adjoint $F:$ WSet $\rightarrow \boldsymbol{b} \boldsymbol{Q}$.
We call $F(X, w)$ the free bounded archimedean ℓ-algebra over (X, w).

Free bounded archimedean ℓ-algebras

If $A \in \boldsymbol{b} \boldsymbol{a} \boldsymbol{\ell}$, then $(A,\|\cdot\|) \in \boldsymbol{W} \boldsymbol{S} \boldsymbol{e} \boldsymbol{t}$ and any morphism in $\boldsymbol{b} \boldsymbol{a} \boldsymbol{\ell}$ is a morphism in WSet. Therefore, there is a forgetful functor $U: \boldsymbol{b} \boldsymbol{\ell} \boldsymbol{\ell} \rightarrow \boldsymbol{W S e t}$.

Theorem

U has a left adjoint $F:$ WSet $\rightarrow \boldsymbol{b} \boldsymbol{\ell}$.
We call $F(X, w)$ the free bounded archimedean ℓ-algebra over (X, w).
$F(X, w)$ is obtained by quotienting the free ℓ-algebra over X.

\mathcal{H} functor for bounded archimedean ℓ-algebras

We construct \mathcal{H} endofunctor over bal as follows:

\mathcal{H} functor for bounded archimedean ℓ-algebras

We construct \mathcal{H} endofunctor over bal as follows:

- We define an appropriate weight function w_{A} on A.

\mathcal{H} functor for bounded archimedean ℓ-algebras

We construct \mathcal{H} endofunctor over bal as follows:

- We define an appropriate weight function w_{A} on A.
- We consider the free bounded archimedean ℓ-algebra $F\left(A, w_{A}\right)$.

\mathcal{H} functor for bounded archimedean ℓ-algebras

We construct \mathcal{H} endofunctor over bal as follows:

- We define an appropriate weight function w_{A} on A.
- We consider the free bounded archimedean ℓ-algebra $F\left(A, w_{A}\right)$.
- $\mathcal{H}(A)$ is defined as the quotient of $F\left(A, w_{A}\right)$ by the relations corresponding to the axioms of mbal.

\mathcal{H} functor for bounded archimedean ℓ-algebras

We construct \mathcal{H} endofunctor over bal as follows:

- We define an appropriate weight function w_{A} on A.
- We consider the free bounded archimedean ℓ-algebra $F\left(A, w_{A}\right)$.
- $\mathcal{H}(A)$ is defined as the quotient of $F\left(A, w_{A}\right)$ by the relations corresponding to the axioms of mbal.

Theorem

- $\boldsymbol{A l g}(\mathcal{H})$ is isomorphic to mbal.

\mathcal{H} functor for bounded archimedean ℓ-algebras

We construct \mathcal{H} endofunctor over bal as follows:

- We define an appropriate weight function w_{A} on A.
- We consider the free bounded archimedean ℓ-algebra $F\left(A, w_{A}\right)$.
- $\mathcal{H}(A)$ is defined as the quotient of $F\left(A, w_{A}\right)$ by the relations corresponding to the axioms of mbal.

Theorem

- $\boldsymbol{A l g}(\mathcal{H})$ is isomorphic to mbal.
- There is a dual adjunction between $\operatorname{Alg}(\mathcal{H})$ over ba ℓ and Coalg (\mathcal{V}) over KHaus.

\mathcal{H} functor for bounded archimedean ℓ-algebras

We construct \mathcal{H} endofunctor over bal as follows:

- We define an appropriate weight function w_{A} on A.
- We consider the free bounded archimedean ℓ-algebra $F\left(A, w_{A}\right)$.
- $\mathcal{H}(A)$ is defined as the quotient of $F\left(A, w_{A}\right)$ by the relations corresponding to the axioms of mbal.

Theorem

- $\boldsymbol{A l g}(\mathcal{H})$ is isomorphic to mbal.
- There is a dual adjunction between $\operatorname{Alg}(\mathcal{H})$ over ba ℓ and Coalg (\mathcal{V}) over KHaus.
- The dual adjunction becomes a dual equivalence once restricted to the full subcategory $\boldsymbol{A l g}^{\mathbf{u}}(\mathcal{H})$ of $\boldsymbol{A} \lg (\mathcal{H})$ given by the algebras $\mathcal{H}(A) \rightarrow A$ with $A \in \boldsymbol{u b a}$.

\mathcal{H} functor for bounded archimedean ℓ-algebras

We construct \mathcal{H} endofunctor over bal as follows:

- We define an appropriate weight function w_{A} on A.
- We consider the free bounded archimedean ℓ-algebra $F\left(A, w_{A}\right)$.
- $\mathcal{H}(A)$ is defined as the quotient of $F\left(A, w_{A}\right)$ by the relations corresponding to the axioms of mbal.

Theorem

- $\boldsymbol{A l g}(\mathcal{H})$ is isomorphic to mbal.
- There is a dual adjunction between $\operatorname{Alg}(\mathcal{H})$ over ba ℓ and Coalg (\mathcal{V}) over KHaus.
- The dual adjunction becomes a dual equivalence once restricted to the full subcategory $\boldsymbol{A l g}^{\mathbf{u}}(\mathcal{H})$ of $\boldsymbol{A} \lg (\mathcal{H})$ given by the algebras $\mathcal{H}(A) \rightarrow A$ with $A \in \boldsymbol{u b a} \boldsymbol{\ell}$.

This yields an alternate proof of the dual adjunction between mbal and $K H F$, and of the dual equivalence between muba ℓ and KHF.

Adjunction and duality via algebras/coalgebras

$$
\operatorname{mbal} \cong \operatorname{Alg}(\mathcal{H}) \leftrightarrows \operatorname{Coalg}(\mathcal{V}) \cong K H F
$$

Table of Contents

(1) Gelfand duality

(2) Modal extension of Gelfand duality
(3) Duality via algebras/coalgebras
(4) Consequences

Connections with Stone and Jónsson-Tarski dualities

uba $\ell \longleftrightarrow$ KHaus

Stone

Connections with Stone and Jónsson-Tarski dualities

Connections with Stone and Jónsson-Tarski dualities

Connections with Stone and Jónsson-Tarski dualities

Connections with Stone and Jónsson-Tarski dualities

mubal \longleftrightarrow KHF

Connections with Stone and Jónsson-Tarski dualities

Connections with Stone and Jónsson-Tarski dualities

Connections with Stone and Jónsson-Tarski dualities

Connections with Tarski and Thomason dualities

Sets $\underset{\wp}{\leftrightarrows}$ At $C A B A$

Connections with Tarski and Thomason dualities

$$
\text { balg } \underset{X}{\leftrightarrows} \text { Sets } \underset{\wp}{\leftrightarrows} \text { At } C A B A
$$

Connections with Tarski and Thomason dualities

Connections with Tarski and Thomason dualities

Connections with Tarski and Thomason dualities

mbalg $\underset{X}{\stackrel{B}{\leftrightarrows}}$ KF $\underset{\wp}{\stackrel{\text { At }}{\leftrightarrows}}$ CMMA

Connections with Tarski and Thomason dualities

Connections with Tarski and Thomason dualities

$\boldsymbol{\operatorname { A l g }}(\mathcal{H}) \longleftrightarrow \operatorname{Coalg}(\mathcal{P}) \longleftrightarrow$ CMMA

Correspondence theory

Let $(A, \square) \in \boldsymbol{m b a} \boldsymbol{\ell}$. It turns out that (A, \square) satisfies the axiom on the right iff R_{\square} on Y_{A} satisfies the property on the left.
seriality
reflexivity
transitivity
symmetry

$$
\square 0=0
$$

$$
\square a \leq a
$$

$$
\square a \leq \square(\square a(1-\square 0)+a \square 0)
$$

$$
\diamond \square a(1-\square 0) \leq a(1-\square 0)
$$

Correspondence theory

Let $(A, \square) \in \boldsymbol{m b a} \boldsymbol{l}$. It turns out that (A, \square) satisfies the axiom on the right iff R_{\square} on Y_{A} satisfies the property on the left.

$$
\text { If } \square 0=0
$$

reflexivity	$\square a \leq a$
transitivity	$\square a \leq \square \square a$
symmetry	$\diamond \square a \leq a$

Canonicity

- The canonical extension of a boolean algebra B is a complete an atomic boolean algebra B^{σ} such that there is an embedding $B \rightarrow B^{\sigma}$ satisfying Density and Compactness axioms.

Canonicity

- The canonical extension of a boolean algebra B is a complete an atomic boolean algebra B^{σ} such that there is an embedding $B \rightarrow B^{\sigma}$ satisfying Density and Compactness axioms.
- The canonical extension of $B \in \boldsymbol{B} \boldsymbol{A}$ is realized as $\wp(\operatorname{Uf}(B))$.

Canonicity

- The canonical extension of a boolean algebra B is a complete an atomic boolean algebra B^{σ} such that there is an embedding $B \rightarrow B^{\sigma}$ satisfying Density and Compactness axioms.
- The canonical extension of $B \in \boldsymbol{B A}$ is realized as $\wp(\operatorname{Uf}(B))$.
- The notion of canonical extension of a bounded archimedean ℓ-algebra was introduced by Bezhanishvili, Morandi, and Olberding (2018).

Canonicity

- The canonical extension of a boolean algebra B is a complete an atomic boolean algebra B^{σ} such that there is an embedding $B \rightarrow B^{\sigma}$ satisfying Density and Compactness axioms.
- The canonical extension of $B \in \boldsymbol{B A}$ is realized as $\wp(\operatorname{Uf}(B))$.
- The notion of canonical extension of a bounded archimedean ℓ-algebra was introduced by Bezhanishvili, Morandi, and Olberding (2018).
- If $\boldsymbol{A} \in \boldsymbol{b} \boldsymbol{a} \ell$, its canonical extension can be realized as $B\left(Y_{A}\right) \in \boldsymbol{b} a l g$.

Canonicity

- The canonical extension of a boolean algebra B is a complete an atomic boolean algebra B^{σ} such that there is an embedding $B \rightarrow B^{\sigma}$ satisfying Density and Compactness axioms.
- The canonical extension of $B \in \boldsymbol{B A}$ is realized as $\wp(\operatorname{Uf}(B))$.
- The notion of canonical extension of a bounded archimedean ℓ-algebra was introduced by Bezhanishvili, Morandi, and Olberding (2018).
- If $\boldsymbol{A} \in \boldsymbol{b} \boldsymbol{a} \boldsymbol{\ell}$, its canonical extension can be realized as $B\left(Y_{A}\right) \in \boldsymbol{b a l g}$.
- If $(A, \square) \in \boldsymbol{m b a} \boldsymbol{\ell}$, then $\left(B\left(Y_{A}\right), \square_{R_{\square}}\right) \in \boldsymbol{m b a l g}$.

Canonicity

- The canonical extension of a boolean algebra B is a complete an atomic boolean algebra B^{σ} such that there is an embedding $B \rightarrow B^{\sigma}$ satisfying Density and Compactness axioms.
- The canonical extension of $B \in \boldsymbol{B} \boldsymbol{A}$ is realized as $\wp(\operatorname{Uf}(B))$.
- The notion of canonical extension of a bounded archimedean ℓ-algebra was introduced by Bezhanishvili, Morandi, and Olberding (2018).
- If $\boldsymbol{A} \in \boldsymbol{b} \boldsymbol{a} \boldsymbol{\ell}$, its canonical extension can be realized as $B\left(Y_{A}\right) \in \boldsymbol{b} a l \mathbf{g}$.
- If $(A, \square) \in \boldsymbol{m b a} \boldsymbol{\ell}$, then $\left(B\left(Y_{A}\right), \square_{R_{\square}}\right) \in \boldsymbol{m b a l g}$.
- All the axioms considered above are preserved in the canonical extension.

Connections with other dualities

- Isbell duality (1972)

Compact regular frames (frame of opens)

Connections with other dualities

- Isbell duality (1972)

Compact regular frames (frame of opens)

- De Vries duality (1962) de Vries algebras (Boolean algebra of regular opens + proximity)

Connections with other dualities

- Isbell duality (1972)

Compact regular frames (frame of opens)

- De Vries duality (1962)
de Vries algebras (Boolean algebra of regular opens + proximity)
Dualities for compact Hausdorff frames extending these two dualities were investigated by G. Bezhanishvili, N. Bezhanishvili, and Harding (2015). They are obtained by endowing compact regular frames and de Vries algebras with modal operators.

Connections with other dualities

- Isbell duality (1972)

Compact regular frames (frame of opens)

- De Vries duality (1962)
de Vries algebras (Boolean algebra of regular opens + proximity)
Dualities for compact Hausdorff frames extending these two dualities were investigated by G. Bezhanishvili, N. Bezhanishvili, and Harding (2015). They are obtained by endowing compact regular frames and de Vries algebras with modal operators. An interesting direction of research is to investigate the connections between these dualities for KHaus and KHF with Gelfand duality and its modal extension.

Thanks for your attention!

Stone duality and Gelfand duality

Definition

- A uniformly complete bounded archimedean ℓ-algebra A is called clean if each element of A can be written as a sum of an idempotent and a unit.
- The full subcategory of ubal given by its clean objects is denoted by cubal.
- cubal is dually equivalent to Stone.

Stone duality and Gelfand duality

Definition

- A uniformly complete bounded archimedean ℓ-algebra A is called clean if each element of A can be written as a sum of an idempotent and a unit.
- The full subcategory of ubal given by its clean objects is denoted by cubal.
- cubal is dually equivalent to Stone.

Stone duality and Gelfand duality

Definition

- A uniformly complete bounded archimedean ℓ-algebra A is called clean if each element of A can be written as a sum of an idempotent and a unit.
- The full subcategory of ubal given by its clean objects is denoted by cubal.
- cubal is dually equivalent to Stone.

Esakia-Goldblatt duality and Gelfand duality

Definition

Let mcubal the full subcategory of clean objects of muba $\boldsymbol{\ell}$.

Theorem

- mcubal is dually equivalent to the category of descriptive frames DF.

Esakia-Goldblatt duality and Gelfand duality

Definition

Let mcubal the full subcategory of clean objects of muba $\boldsymbol{\ell}$.

Theorem

- mcubal is dually equivalent to the category of descriptive frames DF.
- mcubal is equivalent to the category MA of modal algebras.

Esakia-Goldblatt duality and Gelfand duality

Definition

Let mcubal the full subcategory of clean objects of muba $\boldsymbol{\ell}$.

Theorem

- mcubal is dually equivalent to the category of descriptive frames DF .
- mcubal is equivalent to the category MA of modal algebras.

Basic algebras

Definition

- $\boldsymbol{A} \in \boldsymbol{b} \boldsymbol{a} \boldsymbol{\ell}$ is Dedekind complete if each subset bounded above has a least upper bound, and hence each subset bounded below has a greatest lower bound.
- For $A \in \boldsymbol{b} \boldsymbol{a} \boldsymbol{\ell}$ let $\operatorname{ld}(A)$ be the boolean algebra of idempotents of A.
- We call $A \in \boldsymbol{b a} \boldsymbol{\ell}$ a basic algebra if A is Dedekind complete and $\operatorname{Id}(A)$ is atomic.
- Let balg be the category of basic algebras and normal homomorphisms, i.e. the morphisms in bal preserving all the existing joins and meets.

Proposition

Every basic algebra is uniformly complete.

balg and Sets

Definition
 Let $A \in$ balg and $X \in$ Sets.
 - let X_{A} be the set of co-atoms of $\operatorname{Id}(A)$. This yields a contravariant functor balg \rightarrow Sets.
 - the set $B(X)$ of all bounded functions on X form naturally a basic algebra. This yields a contravariant functor Sets \rightarrow balg.

The following theorem can be thought of as an analogue of Tarski duality between the category of complete and atomic boolean algebras and Sets.

Theorem

balg is dually equivalent to Sets.

Modal basic algebras

Definition

- $(A, \square) \in \boldsymbol{m b} \boldsymbol{a} \boldsymbol{\ell}$ is a modal basic algebra if $A \in \boldsymbol{b a l g}$ and \square preserves all the existing meets.
- Let mbalg be the category of modal basic algebras and normal homomorphisms preserving the modal operator.
- A Kripke frame (X, R) is a set X together with a binary relation R on X.
- We denote the category of Kripke frames and p-morphisms by KF

The following theorem can be thought of as an analogue of Thomason duality between the category of completely multiplicative modal algebras and Sets.

Theorem

mbalg is dually equivalent to KF.

Duality between mbalg and $\mathbf{K F}$

The duality can be obtained in two ways:

- by adapting the proof for mbal, or
- by using algebraic/coalgebraic methods.

Definition

- For $(X, R) \in \boldsymbol{K} \boldsymbol{F}$ we define \square_{R} on $B(X)$ as before. This defines a contravariant functor $\mathbf{K F} \rightarrow \boldsymbol{m b a l g}$.
- For $A \in \boldsymbol{m b a l g}$, we define R_{\square} on X_{A} by $x R_{\square} y$ iff $\square y \leq x$. This defines a contravariant functor mbalg $\rightarrow \boldsymbol{K F}$.

These two functors yield a dual equivalence between mbalg and $\boldsymbol{K F}$.

Duality between mbalg and KF using algebras and coalgebras

- KF is isomorphic to the category of coalgebras for the powerset endofunctor \mathcal{P} on Sets.

Theorem

- There is an endofunctor \mathcal{H} on balg so that mbalg is isomorphic to the category of algebras for \mathcal{H}.
- Coalg (\mathcal{P}) is dually equivalent to $\operatorname{Alg}(\mathcal{H})$.

