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Introduction

Stone duality establishes a dual equivalence between the categories of
boolean algebras and Stone spaces.
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Introduction

Stone duality establishes a dual equivalence between the categories of
boolean algebras and Stone spaces.
Stone duality can be extended to a dual equivalence between the
categories modal algebras and descriptive frames, i.e. Stone spaces
with a continuous binary relation. Such a duality is called
Jónsson-Tarski duality (full duality is due to Halmos, Esakia, and
Goldblatt).
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the category of uniformly complete bounded archimedean `-algebras
and the category of compact Hausdorff spaces.
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Gelfand duality

Gelfand and Naimark (1943): the category KHaus of compact
Hausdorff spaces is dually equivalent to the category of commutative
C∗-algebras.

This gives a representation of commutative C∗-algebras
as the rings of continuous complex-valued functions on X ∈ KHaus.
An alternate version of this duality was studied by Stone (1940) who
characterized the rings of continuous real-valued functions on
compact Hausdorff spaces. The rings studied by Stone are also called
Stone rings (Banaschewski).
The two dualities are strictly related: complexification of Stone rings
are commutative C∗-algebras. On the other hand, self-adjoint
elements of commutative C∗-algebras form Stone rings.
Similar dualities were investigated by the Krein brothers, Kakutani,
and Yosida (vector lattices or Riesz spaces) and later by Henriksen
and Johnson.
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Bounded archimedean `-algebras

We are interested in the Stone’s version of this duality that utilizes
continuous real-valued functions. We call it Gelfand-Naimark-Stone
duality.

The axioms defining such structures are

algebraic (R-algebras),
order-theoretic (lattice-ordered, bounded, archimedean),
analytic (uniformly complete).

By dropping the analytic part of the axiomatization we get the larger
class of bounded archimedean `-algebras introduced by Bezhanishvili,
Morandi, and Olberding (2013).
Many rings of real-valued functions are examples of bounded
archimedean `-algebras (continuous, piecewise constant, and
piecewise polynomial). Stone rings correspond to the uniformly
complete bounded archimedean `-algebras.
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`-algebras

Definition
Let A be commutative ring with 1 together with a partial order ≤. It is an
`-algebra (that is, a lattice-ordered R-algebra) if

A is a lattice,
a ≤ b implies a + c ≤ b + c for each c (`-group),
0 ≤ a, b implies 0 ≤ ab (`-ring),
A is an R-algebra,
0 ≤ a ∈ A and 0 ≤ λ ∈ R imply 0 ≤ λ · a.
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Bounded archimedean `-algebras

Definition
Let A be an `-algebra.

A is bounded if for each a ∈ A there is n ∈ N such that a ≤ n · 1
(that is, 1 is a strong order unit).
A is archimedean if for each a, b ∈ A, whenever n · a ≤ b for each
n ∈ N, then a ≤ 0.
Let ba` be the category of bounded archimedean `-algebras and
unital `-algebra homomorphisms.



Bounded archimedean `-algebras

Definition
Let A be an `-algebra.

A is bounded if for each a ∈ A there is n ∈ N such that a ≤ n · 1
(that is, 1 is a strong order unit).

A is archimedean if for each a, b ∈ A, whenever n · a ≤ b for each
n ∈ N, then a ≤ 0.
Let ba` be the category of bounded archimedean `-algebras and
unital `-algebra homomorphisms.



Bounded archimedean `-algebras

Definition
Let A be an `-algebra.

A is bounded if for each a ∈ A there is n ∈ N such that a ≤ n · 1
(that is, 1 is a strong order unit).
A is archimedean if for each a, b ∈ A, whenever n · a ≤ b for each
n ∈ N, then a ≤ 0.

Let ba` be the category of bounded archimedean `-algebras and
unital `-algebra homomorphisms.



Bounded archimedean `-algebras

Definition
Let A be an `-algebra.

A is bounded if for each a ∈ A there is n ∈ N such that a ≤ n · 1
(that is, 1 is a strong order unit).
A is archimedean if for each a, b ∈ A, whenever n · a ≤ b for each
n ∈ N, then a ≤ 0.
Let ba` be the category of bounded archimedean `-algebras and
unital `-algebra homomorphisms.



From KHaus to ba`: ring of continuous functions C(X )

Definition
Let X be a compact Hausdorff space.
We denote by C(X ) the set of continuous real-valued functions on X .

C(X ) is a bounded archimedean `-algebra.

bounded because X is compact,
archimedean because R is archimedean (no infinitesimals).

Let f : X → Y be a continuous function.
If g ∈ C(Y ), then C(f )(g) := g ◦ f ∈ C(X ).
This defines a contravariant functor C : KHaus → ba`.
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From ba` to KHaus: the Yosida space

Definition
Let A ∈ ba`.

A subset I ⊆ A is called an `-ideal if

I is a ring-theoretic ideal of A,

if b ∈ I and |a| ≤ |b| then a ∈ I. Where |a| = a ∨ (−a).

A proper `-ideal maximal wrt subset inclusion is called a maximal
`-ideal.
The set of maximal `-ideals of A is denoted by YA.
YA and can be endowed with a topology whose closed subsets are
Z`(I) := {x ∈ YA | I ⊆ x} for each `-ideal I.
YA is called the Yosida space of A and it is compact Hausdorff.
Let α : A→ B be a unital `-algebra homomorphism.
The inverse image α−1 : YB → YA is a well-defined continuous
function.
This defines a contravariant functor Y : ba`→ KHaus.
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Uniformly complete bounded archimedean `-algebras

Definition
We can define a norm on each A ∈ ba` by

‖a‖ = inf{λ ∈ R | |a| ≤ λ · 1}.

It is well-defined because A is bounded, and
it is a norm because A is archimedean.
We say that A ∈ ba` is uniformly complete if it is complete with
respect to ‖·‖.
The full subcategory of ba` given by its uniformly complete objects is
denoted by uba`.

The rings of piecewise constant and piecewise polynomial functions on
form two bounded archimedean `-algebras that are not usually uniformly
complete.
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C(X ) is uniformly complete

This norm on C(X ) corresponds to the sup norm

‖f ‖ = sup{|f (x)| | x ∈ X}.

Proposition
C(X ) is uniformly complete for each X compact Hausdorff.
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Adjunction and duality

Lemma (Stone)
Let X ∈ KHaus.

If x ∈ X, then {f ∈ C(X ) | f (x) = 0} is a maximal `-ideal of C(X ).

The map εX : X → YC(X) defined by εX (x) = {f ∈ C(X ) | f (x) = 0}
is a homeomorphism.
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Adjunction and duality: ζA

Lemma
Let A ∈ ba`.

If x is a maximal `-ideal of A, then A/x ∼= R. (Hölder)

For each a ∈ A and x ∈ YA we can associate the unique real number
r such that a + x = r + x. We denote such a number by ζA(a)(x).
ζA(a) : YA → R is a continuous function for each a ∈ A.
The map ζA : A→ C(YA) is a 1-1 ba`-morphism.
ζA embeds A into the uniformly complete C(YA).
Since ζA(A) separates the points of YA, it is a uniformly dense
subalgebra of C(YA) by the Stone-Weierstrass Theorem.
If A is uniformly complete, then ζA is an isomorphism.

Theorem (Representation)
Each A ∈ ba` is isomorphic to a uniformly dense subalgebra of C(X ) for
some X ∈ KHaus.
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For each a ∈ A and x ∈ YA we can associate the unique real number
r such that a + x = r + x. We denote such a number by ζA(a)(x).
ζA(a) : YA → R is a continuous function for each a ∈ A.
The map ζA : A→ C(YA) is a 1-1 ba`-morphism.

ζA embeds A into the uniformly complete C(YA).
Since ζA(A) separates the points of YA, it is a uniformly dense
subalgebra of C(YA) by the Stone-Weierstrass Theorem.
If A is uniformly complete, then ζA is an isomorphism.

Theorem (Representation)
Each A ∈ ba` is isomorphic to a uniformly dense subalgebra of C(X ) for
some X ∈ KHaus.



Adjunction and duality: ζA

Lemma
Let A ∈ ba`.

If x is a maximal `-ideal of A, then A/x ∼= R. (Hölder)
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For each a ∈ A and x ∈ YA we can associate the unique real number
r such that a + x = r + x. We denote such a number by ζA(a)(x).
ζA(a) : YA → R is a continuous function for each a ∈ A.
The map ζA : A→ C(YA) is a 1-1 ba`-morphism.
ζA embeds A into the uniformly complete C(YA).
Since ζA(A) separates the points of YA, it is a uniformly dense
subalgebra of C(YA) by the Stone-Weierstrass Theorem.
If A is uniformly complete, then ζA is an isomorphism.

Theorem (Representation)
Each A ∈ ba` is isomorphic to a uniformly dense subalgebra of C(X ) for
some X ∈ KHaus.



Adjunction and duality: ζA

Lemma
Let A ∈ ba`.

If x is a maximal `-ideal of A, then A/x ∼= R. (Hölder)
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Adjunction and duality

Lemma
ε : IdKHaus → YC is a natural isomorphism.

ζ : Idba` → CY is a natural transformation.

Theorem
There is a dual adjunction between ba` and KHaus whose unit and
counit are ε and ζ.

This adjunction restricts to a dual equivalence between
uba` and KHaus.
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uba` is a reflective subcategory of ba` and CY : ba`→ uba` is a
reflector.
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Continuous relations

If R is a binary relation on a set X , x ∈ X , and A ⊆ X , we let

R[x ] = {y ∈ X | xRy}

and R−1[A] = {x ∈ X | ∃y ∈ A s.t. xRy}.

Definition
A binary relation R on a compact Hausdorff space X is said to be
continuous if:

R[x ] is closed for each x ∈ X ;
R−1[F ] is closed for each F closed of X ;
R−1[U] is open for each U open of X .
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Compact Hausdorff frames

Definition
A compact Hausdorff frame is a compact Hausdorff space together
with a continuous relation.

A map f : (X ,R)→ (Y ,S) between compact Hausdorff frames is a
p-morphism if f (R[x ]) = S[f (x)] for each x ∈ X .
We denote the category of compact Hausdorff frames and continuous
p-morphisms with KHF .
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�R on C(X )
A relation R on a set X induces an operator �R on ℘(X ).

If A ⊆ X , then

�RA = X \ R−1[X \ A] = {x ∈ X | R[x ] ⊆ A}.

Subsets of X are in bijection with their characteristic functions. The
characteristic function of �RA associates with each x ∈ X

inf χA(R[x ])

where the inf is taken in {0, 1}.

Definition
Let f ∈ C(X ). We define

(�R f )(x) =
{

inf f (R[x ]) if R[x ] 6= ∅
1 otherwise.

where the inf is taken in R.
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�R on C(X )

Lemma
Let (X ,R) ∈ KHF and f ∈ C(X ), then

�R f is a well-defined real-valued function on X.

�R f is a continuous function.

Sketch of the proof: Assume R is serial, i.e. R[x ] 6= ∅ for all x ∈ X .
�R f is well-defined because R[x ] is closed and f is continuous so f (R[x ])

admits an inf in R.
We also have

(�R f )−1(λ,∞) = X \ R−1[X \ f −1(λ,∞)] is open, and

(�R f )−1(−∞, λ) = R−1[f −1(−∞, λ)] is open.

Thus, �R f is continuous.
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♦R on C(X )

A relation R on a set X also induces an operator ♦R on ℘(X ): if A ⊆ X ,
then

♦RA = R−1[A]

Thus, we can define ♦R on C(X ) as follows

(♦R f )(x) =
{

sup f (R[x ]) if R[x ] 6= ∅
0 otherwise.

It turns out that ♦R f = 1−�R(1− f ).

When R is serial, i.e. R[x ] 6= ∅ for all x ∈ X , we have that

(�R f )(x) = inf f (R[x ]),
(♦R f )(x) = sup f (R[x ]),
♦R f = −�R(−f ).
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From continuous relations to modal operators

If R is a partial order on X and f ∈ C(X ), then

�R f is the greatest increasing function below f ,
♦R f the least decreasing function above f .
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Properties of �R

Let (X ,R) be a compact Hausdorff frame, f , g ∈ C(X ), and λ ∈ R.
If R is serial, then �R0 = 0 so

1 �R(f ∧ g) = �R f ∧�Rg .
2 �Rλ = λ.
3 �R(f +) = (�R f )+.
4 �R(f + λ) = �R f + λ.
5 If 0 ≤ λ, then �R(λf ) = λ�R f .
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Modal bounded archimedean `-algebras

Definition
Let A ∈ ba`. We say that a unary function � : A→ A is a modal
operator on A provided � satisfies the following axioms for each
a, b ∈ A and λ ∈ R:

(M1) �(a ∧ b) = �a ∧�b.
(M2) �λ = λ+ (1− λ)�0.
(M3) �(a+) = (�a)+ (where a+ = a ∨ 0).
(M4) �(a + λ) = �a + �λ−�0.
(M5) �(λa) = (�λ)(�a) provided λ ≥ 0.

If � is a modal operator on A ∈ ba`, then we call the pair (A,�) a
modal bounded archimedean `-algebra.
Let mba` be the category of modal bounded archimedean `-algebras
and unital `-algebra homomorphisms preserving �.
Let muba` be the full subcategory of uniformly complete objects of
mba`.



Modal bounded archimedean `-algebras

Definition
Let A ∈ ba`. We say that a unary function � : A→ A is a modal
operator on A provided � satisfies the following axioms for each
a, b ∈ A and λ ∈ R:

(M1) �(a ∧ b) = �a ∧�b.
(M2) �λ = λ+ (1− λ)�0.
(M3) �(a+) = (�a)+ (where a+ = a ∨ 0).
(M4) �(a + λ) = �a + �λ−�0.
(M5) �(λa) = (�λ)(�a) provided λ ≥ 0.
If � is a modal operator on A ∈ ba`, then we call the pair (A,�) a
modal bounded archimedean `-algebra.

Let mba` be the category of modal bounded archimedean `-algebras
and unital `-algebra homomorphisms preserving �.
Let muba` be the full subcategory of uniformly complete objects of
mba`.



Modal bounded archimedean `-algebras

Definition
Let A ∈ ba`. We say that a unary function � : A→ A is a modal
operator on A provided � satisfies the following axioms for each
a, b ∈ A and λ ∈ R:

(M1) �(a ∧ b) = �a ∧�b.
(M2) �λ = λ+ (1− λ)�0.
(M3) �(a+) = (�a)+ (where a+ = a ∨ 0).
(M4) �(a + λ) = �a + �λ−�0.
(M5) �(λa) = (�λ)(�a) provided λ ≥ 0.
If � is a modal operator on A ∈ ba`, then we call the pair (A,�) a
modal bounded archimedean `-algebra.
Let mba` be the category of modal bounded archimedean `-algebras
and unital `-algebra homomorphisms preserving �.

Let muba` be the full subcategory of uniformly complete objects of
mba`.



Modal bounded archimedean `-algebras

Definition
Let A ∈ ba`. We say that a unary function � : A→ A is a modal
operator on A provided � satisfies the following axioms for each
a, b ∈ A and λ ∈ R:

(M1) �(a ∧ b) = �a ∧�b.
(M2) �λ = λ+ (1− λ)�0.
(M3) �(a+) = (�a)+ (where a+ = a ∨ 0).
(M4) �(a + λ) = �a + �λ−�0.
(M5) �(λa) = (�λ)(�a) provided λ ≥ 0.
If � is a modal operator on A ∈ ba`, then we call the pair (A,�) a
modal bounded archimedean `-algebra.
Let mba` be the category of modal bounded archimedean `-algebras
and unital `-algebra homomorphisms preserving �.
Let muba` be the full subcategory of uniformly complete objects of
mba`.



From modal operators to continuous relations

Lemma
Let (X ,R) ∈ KHF and x , y ∈ X. Then

xRy iff for each f ≥ 0, f (y) = 0, implies (�R f )(x) = 0.

Also, ζA(a) ∈ C(YA) vanishes exactly on the y such that a ∈ y .
Indeed, a ∈ y iff ζA(a)(y) = a + y = 0 + y .

This suggests the following definition of R� on YA.

Definition
Let (A,�) ∈ mba` and x , y ∈ YA. We define xR�y if for each a ∈ A

a ≥ 0, a ∈ y implies �a ∈ x
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From modal operators to continuous relations

The family

Z`(a) = {x ∈ YA | a ∈ x} where a ∈ A, a ≥ 0

forms a basis of closed sets of YA.

Lemma
Let (A,�) ∈ mba` and a ∈ A, a ≥ 0.

R�[x ] is closed for each x ∈ YA.
R−1
� [Z`(a)] = Z`(�a).

R−1
� [YA \ Z`(a)] = YA \ Z`(♦a).
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From modal operators to continuous relations

Lemma (Esakia Lemma)
Let (X ,R) ∈ KHF . Let F be a nonempty downward directed family of
closed subsets of X (i.e. ∀A,B ∈ F , ∃C ∈ F such that C ⊆ A∩B). Then

R−1 ⋂
{F | F ∈ F} =

⋂
{R−1[F ] | F ∈ F}

Since every closed subset of YA is intersection of a downward directed
family of sets of the form Z`(a) with a ≥ 0, the previous lemma yields

Theorem
R� is a continuous relation on YA.
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Adjunction and duality

Theorem
C : mba`→ KHF given by C(X ,R) = (C(X ),�R) is a contravariant
functor.

Y : KHF → mba` given by Y (A,�) = (YA,R�) is a contravariant
functor.

Theorem
Let (A,�) ∈ mba` and (X ,R) ∈ KHF .

for each x , y ∈ X we have xRy iff εX (x)R�RεX (y)
so εX : (X ,R)→ (YC(X),R�R ) is an isomorphism in KHF .
for each a ∈ A we have ζA(�a) = �R�

ζA(a)
so ζA : (A,�)→ (C(YA),�R�

) is a modal homomorphism.
ε : IdKHF → YC is a natural isomorphism.
ζ : Idmba` → CY is a natural transformation.
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Adjunction and duality

Theorem (Main theorem)
There is a dual adjunction between mba` and KHF whose unit and
counit are ε and ζ.

This adjunction restricts to a dual equivalence between
muba` and KHF .
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Y

C

C

Y

muba` is a reflective subcategory of mba` and CY : mba`→ muba` is a
reflector.
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Algebras and coalgebras for an endofunctor

Definition
Let C be a category and T : C→ C an endofunctor.

A coalgebra for T is a pair (B, g) where B is an object of C and
g : B → T (B) is a C-morphism.
A morphism between two coalgebras (B1, g1) and (B2, g2) for T is a
C-morphism α : B1 → B2 such that the following square is
commutative.

B1 B2

T (B1) T (B2)

g1

α

g2

T (α)

Let Coalg(T ) be the category whose objects are coalgebras for T
and whose morphisms are morphisms of coalgebras.

The definition of algebras for an endofunctor is dual.
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Vietoris space

Definition
Let X ∈ KHaus and V(X ) be the set of its closed subsets.
If U is an open subset of X consider the following subsets of V(X ).

�U = {F ∈ V(X ) | F ⊆ U},
♦U = {F ∈ V(X ) | F ∩ U 6= ∅}.

The Vietoris topology on V(X ) is the topology generated by

{�U ,♦U | U open in X}.

Theorem (Vietoris, Michael)
If X ∈ KHaus, then V(X ) ∈ KHaus.

Moreover, V is an endofunctor on KHaus.



Vietoris space

Definition
Let X ∈ KHaus and V(X ) be the set of its closed subsets.
If U is an open subset of X consider the following subsets of V(X ).

�U = {F ∈ V(X ) | F ⊆ U},
♦U = {F ∈ V(X ) | F ∩ U 6= ∅}.

The Vietoris topology on V(X ) is the topology generated by

{�U ,♦U | U open in X}.

Theorem (Vietoris, Michael)
If X ∈ KHaus, then V(X ) ∈ KHaus.

Moreover, V is an endofunctor on KHaus.



Vietoris space

Definition
Let X ∈ KHaus and V(X ) be the set of its closed subsets.
If U is an open subset of X consider the following subsets of V(X ).

�U = {F ∈ V(X ) | F ⊆ U},
♦U = {F ∈ V(X ) | F ∩ U 6= ∅}.

The Vietoris topology on V(X ) is the topology generated by

{�U ,♦U | U open in X}.

Theorem (Vietoris, Michael)
If X ∈ KHaus, then V(X ) ∈ KHaus.

Moreover, V is an endofunctor on KHaus.



Vietoris space

Definition
Let X ∈ KHaus and V(X ) be the set of its closed subsets.
If U is an open subset of X consider the following subsets of V(X ).

�U = {F ∈ V(X ) | F ⊆ U},
♦U = {F ∈ V(X ) | F ∩ U 6= ∅}.

The Vietoris topology on V(X ) is the topology generated by

{�U ,♦U | U open in X}.

Theorem (Vietoris, Michael)
If X ∈ KHaus, then V(X ) ∈ KHaus.
Moreover, V is an endofunctor on KHaus.



Coalgebras for V and continuous relations

If R is a continuous relation on X ∈ KHaus, then ρ : X → V(X )
given by ρ(x) := R[x ] is a continuous function.

If ρ : X → V(X ) is a continuous function, then R[x ] := ρ(x) is a
continuous relation.

Theorem (Folklore)
KHF is isomorphic to Coalg(V).
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Algebraic/coalgebraic point of view

Theorem
V is an endofunctor on Stone. (Michael)

DF is isomorphic to Coalg(V) over Stone.

Since Stone is dually equivalent to BA there is an endofunctor H on BA
corresponding to V.

Definition
Let A ∈ BA.

Let F (A) be the free boolean algebra over the underlying set of A.
Denote by �a the image of a under the natural map A→ F (A).
Let H(A) ∈ BA be the quotient of F (A) over the relations

�a ∧�b = �a∧b and �1 = 1
H(A) is the free boolean algebra over the underlying meet-semilattice
of A.
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Algebraic/coalgebraic point of view

Theorem (Abramsky (1988), Kupke, Kurz, and Venema (2004))
Alg(H) is isomorphic to MA,

Alg(H) is dually equivalent to Coalg(V) over Stone.

Indeed, the � operators on A correspond to meet-semilattice
homomorphisms from the underlying semilattice of A to itself.
The following diagram is commutative up to natural isomorphism

BA Stone

BA Stone

Uf

H V

Clop

This yields an alternate proof of Jónsson-Tarski duality.
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Free bounded archimedean `-algebras

ba` is not a variety so the existence of free objects is not guaranteed.

Lemma
Let A,B ∈ ba` and α : A→ B be a ba`-morphism.
Then for each a ∈ A we have ‖α(a)‖ ≤ ‖a‖.

Proposition
Free bounded archimedean `-algebras over a nonempty set X do not exist.

Proof (sketch): Suppose that F (X ) ∈ ba` is free over X . Pick x ∈ X ,
choose r ∈ R with r > ‖x‖, and define g : X → R by setting g(y) = r for
each y ∈ X . There is a (unique) ba`-morphism α : F (X )→ R with
α|X = g , so α(x) = r . By the lemma

r = ‖α(x)‖ ≤ ‖x‖ < r .

The obtained contradiction proves that F (X ) does not exist.
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Free bounded archimedean `-algebras

We can overcome this obstacle by considering free bounded archimedean
`-algebras over weighted sets.

Definition
A weight function on a set X is a function w from X into the
nonnegative real numbers.

A weighted set is a pair (X ,w) where X is a set and w is a weight
function on X .
Let WSet be the category whose objects are weighted sets and whose
morphisms are functions f : (X1,w1)→ (X2,w2) satisfying
w2(f (x)) ≤ w1(x) for each x ∈ X .
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Free bounded archimedean `-algebras

If A ∈ ba`, then (A, ‖·‖) ∈WSet and any morphism in ba` is a morphism
in WSet. Therefore, there is a forgetful functor U : ba`→WSet.

Theorem
U has a left adjoint F : WSet → ba`.
We call F (X ,w) the free bounded archimedean `-algebra over (X ,w).

F (X ,w) is obtained by quotienting the free `-algebra over X .
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H functor for bounded archimedean `-algebras

We construct H endofunctor over ba` as follows:

We define an appropriate weight function wA on A.

We consider the free bounded archimedean `-algebra F (A,wA).
H(A) is defined as the quotient of F (A,wA) by the relations
corresponding to the axioms of mba`.

Theorem
Alg(H) is isomorphic to mba`.

There is a dual adjunction between Alg(H) over ba` and Coalg(V)
over KHaus.
The dual adjunction becomes a dual equivalence once restricted to
the full subcategory Algu(H) of Alg(H) given by the algebras
H(A)→ A with A ∈ uba`.

This yields an alternate proof of the dual adjunction between mba` and
KHF , and of the dual equivalence between muba` and KHF .
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Adjunction and duality via algebras/coalgebras

mba` ∼= Alg(H) Coalg(V) ∼= KHF

muba` ∼= Algu(H)
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Correspondence theory

Let (A,�) ∈ mba`. It turns out that (A,�) satisfies the axiom on the
right iff R� on YA satisfies the property on the left.

seriality �0 = 0

reflexivity �a ≤ a

transitivity �a ≤ �(�a(1−�0) + a�0)

symmetry ♦�a(1−�0) ≤ a(1−�0)
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Canonicity

The canonical extension of a boolean algebra B is a complete an
atomic boolean algebra Bσ such that there is an embedding B → Bσ

satisfying Density and Compactness axioms.

The canonical extension of B ∈ BA is realized as ℘(Uf(B)).
The notion of canonical extension of a bounded archimedean `-algebra
was introduced by Bezhanishvili, Morandi, and Olberding (2018).
If A ∈ ba`, its canonical extension can be realized as B(YA) ∈ balg .
If (A,�) ∈ mba`, then (B(YA),�R�

) ∈ mbalg .
All the axioms considered above are preserved in the canonical
extension.
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Connections with other dualities

Isbell duality (1972)
Compact regular frames (frame of opens)

De Vries duality (1962)
de Vries algebras (Boolean algebra of regular opens + proximity)

Dualities for compact Hausdorff frames extending these two dualities were
investigated by G. Bezhanishvili, N. Bezhanishvili, and Harding (2015).
They are obtained by endowing compact regular frames and de Vries
algebras with modal operators. An interesting direction of research is to
investigate the connections between these dualities for KHaus and KHF
with Gelfand duality and its modal extension.
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Thanks for your attention!



Stone duality and Gelfand duality

Definition
A uniformly complete bounded archimedean `-algebra A is called
clean if each element of A can be written as a sum of an idempotent
and a unit.
The full subcategory of uba` given by its clean objects is denoted by
cuba`.
cuba` is dually equivalent to Stone.

uba` KHaus

cuba` Stone
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Esakia-Goldblatt duality and Gelfand duality

Definition
Let mcuba` the full subcategory of clean objects of muba`.

Theorem
mcuba` is dually equivalent to the category of descriptive frames DF .

mcuba` is equivalent to the category MA of modal algebras.
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Basic algebras

Definition
A ∈ ba` is Dedekind complete if each subset bounded above has a
least upper bound, and hence each subset bounded below has a
greatest lower bound.
For A ∈ ba` let Id(A) be the boolean algebra of idempotents of A.
We call A ∈ ba` a basic algebra if A is Dedekind complete and Id(A)
is atomic.
Let balg be the category of basic algebras and normal
homomorphisms, i.e. the morphisms in ba` preserving all the existing
joins and meets.

Proposition
Every basic algebra is uniformly complete.



balg and Sets

Definition
Let A ∈ balg and X ∈ Sets.

let XA be the set of co-atoms of Id(A). This yields a contravariant
functor balg → Sets.
the set B(X ) of all bounded functions on X form naturally a basic
algebra. This yields a contravariant functor Sets → balg .

The following theorem can be thought of as an analogue of Tarski duality
between the category of complete and atomic boolean algebras and Sets.

Theorem
balg is dually equivalent to Sets.



Modal basic algebras

Definition
(A,�) ∈ mba` is a modal basic algebra if A ∈ balg and � preserves
all the existing meets.
Let mbalg be the category of modal basic algebras and normal
homomorphisms preserving the modal operator.
A Kripke frame (X ,R) is a set X together with a binary relation R on
X .
We denote the category of Kripke frames and p-morphisms by KF

The following theorem can be thought of as an analogue of Thomason
duality between the category of completely multiplicative modal algebras
and Sets.

Theorem
mbalg is dually equivalent to KF .



Duality between mbalg and KF

The duality can be obtained in two ways:
by adapting the proof for mba`, or
by using algebraic/coalgebraic methods.

Definition
For (X ,R) ∈ KF we define �R on B(X ) as before. This defines a
contravariant functor KF → mbalg .
For A ∈ mbalg , we define R� on XA by xR�y iff �y ≤ x . This
defines a contravariant functor mbalg → KF .

These two functors yield a dual equivalence between mbalg and KF .



Duality between mbalg and KF using algebras and
coalgebras

KF is isomorphic to the category of coalgebras for the powerset
endofunctor P on Sets.

Theorem
There is an endofunctor H on balg so that mbalg is isomorphic to
the category of algebras for H.
Coalg(P) is dually equivalent to Alg(H).
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