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Compact Hausdorff spaces

Compact Hausdorff spaces form one of the most important class of
topological spaces.

There are several different dualities involving the category KHaus of
compact Hausdorff spaces and continuous functions. They create bridges
between KHaus and categories of algebraic and lattice-theoretic
structures. We will concentrate on three dualities:

Gelfand duality (1940s)

De Vries duality (1962)

Isbell duality (1972)
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Isbell duality

Isbell duality is obtained by working with the lattice Op(X ) of open
subsets of X ∈ KHaus.

Proposition

Op(X ) ordered by inclusion is a frame, i.e. a complete lattice that satisfies
the join infinite distributive property

V ∩
⋃
i∈I

Ui =
⋃
i∈I

(V ∩ Ui )

We want to characterize the frames of the form Op(X ) for some
X ∈ KHaus.
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Op(X ) is compact and regular

Since X is compact

if
⋃

i∈I Ui = X , then there exist i1, . . . , in ∈ I such that Ui1 ∪ · · · ∪Uin = X .

Definition

We can define a relation on Op(X ) by

U ≺ V iff cl(U) ⊆ V

It is called the well-inside relation.
If we denote by U∗ = int(X \ U) the pseudocomplement of U in Op(X ),
then U ≺ V iff U∗ ∪ V = X .

If X ∈ KHaus, then it is regular. So each open subset V can be written
as the union of all the opens that are well-inside V , i.e.

V =
⋃
{U ∈ Op(X ) | U ≺ V }
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KRFrm

Definition

Let L be a frame.

We say L is compact if for any S ⊆ L, that
∨
S = 1L implies that

there is a finite subset S ′ ⊆ S such that
∨
S ′ = 1L.

We say L is regular if for any b ∈ L, we have b =
∨
{a ∈ L | a ≺ b}

where a ≺ b iff a∗ ∨ b = 1.

Let KRFrm be the category of compact regular frames and frame
homomorphisms.

If f : X → Y is a continuous map, then f −1 : Op(Y )→ Op(X ) is a frame
homomorphism. Thus

Proposition

Op : KHaus→ KRFrm is a contravariant functor.
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Points of a frame

How to recover the points of X from Op(X )?

Let x ∈ X , we can consider the set px = {U ∈ Op(X ) | x ∈ U} ⊆ Op(X )
of the open subsets containing x .

px is a proper filter of Op(X ),

px is a completely prime filter, i.e. x ∈
⋃

i∈I Ui implies x ∈ Uj for
some j ∈ I .

Definition

Let L be a frame.
The completely prime filters of L are called the points of L. The set of
points of L is denoted by pt(L).

Points of L can be equivalently defined as frame homomorphisms L→ 2 or
as meet-prime elements of L.
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pt(L)

Definition

Let L be a frame. We can define a topology on pt(L) whose opens are

{p ∈ pt(L) | a ∈ p}

where a ranges over all the elements of L.

Proposition

If L ∈ KRFrm, then pt(L) ∈ KHaus.

If α : L→ M is a frame homomorphism, the inverse image function
α−1 : pt(M)→ pt(L) is a continuous function.

Proposition

pt : KRFrm→ KHaus is a contravariant functor.
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Isbell duality

Theorem (Isbell 1972)

The contravariant functors Op and pt give rise to a dual equivalence
between KHaus and KRFrm.
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De Vries duality

De Vries duality is obtained by working with the regular open subsets.

Definition

An open subset U of a topological space X is called regular open if
int(cl(U)) = U. We denote the set of all regular opens by RO(X ).

Proposition (Tarski)

RO(X ) ordered by inclusion is a complete boolean algebra where∨
S = int

(
cl
(⋃
S
))

¬U = int(X \ U)
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Well-inside relation on RO(X )

Let X ∈ KHaus. The complete boolean algebra structure on RO(X ) is
not enough to recover the space X .

We also need to consider the well-inside relation restricted to RO(X ).
That is, U ≺ V iff cl(U) ⊆ V .

Proposition

∅ ≺ ∅,
U ≺ V ⇒ U ⊆ V ,

U ⊆ V ≺W ⊆ O ⇒ U ≺ O,

U ≺ V , U ≺W ⇒ U ≺ V ∩W,

U ≺ V ⇒ ¬V ≺ ¬U
U ≺ V ⇒ ∃W ∈ RO(X ) such that U ≺W ≺ V ,

V 6= ∅ ⇒ ∃W ∈ RO(X ) \ {∅} such that W ≺ V .
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De Vries algebras

Definition

A de Vries algebra is a complete boolean algebra B together with a
relation ≺ such that

0 ≺ 0,

a ≺ b ⇒ a ≤ b,

a ≤ b ≺ c ≤ d ⇒ a ≺ d ,

a ≺ b, a ≺ c ⇒ a ≺ b ∧ c ,

a ≺ b ⇒ ¬b ≺ ¬a,

a ≺ b ⇒ ∃c ∈ B such that a ≺ c ≺ b,

b 6= 0 ⇒ ∃c ∈ B \ {0} such that c ≺ b.



DeV

If f : X → Y is a continuous function between compact Hausdorff spaces,
U ∈ RO(Y ) does not necessarily imply f −1(U) ∈ RO(X ).

To get a regular open, we need to take its regularization int(cl(f −1(U))).

Consequently, the morphisms in the category DeV of de Vries algebras do
not necessarily preserve all the boolean operations. Moreover, the
composition in DeV is not the usual composition of functions.

Proposition

RO : KHaus→ DeV is a contravariant functor.
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Points as maximal round filters

How to recover the points of X from RO(X )?

Let x ∈ X , we can consider the set Ex = {U ∈ RO(X ) | x ∈ U} ⊆ RO(X )
of regular opens containing x .

Ex is a proper filter of RO(X ),

Ex is a round filter, i.e. if U ∈ Ex , then there is V ≺ U such that
V ∈ Ex .

Proposition

For each x ∈ X, the set Ex is maximal among proper round filters of
RO(X ).
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Ends

Definition

A maximal round filter of a de Vries algebra B is called an end. We denote
the set of all ends of B by End(B).

We can define on End(B) the
topology generated by the subsets of the form

{E ∈ End(B) | a ∈ E}

for a ∈ B.

Theorem (De Vries 1962)

If B is a de Vries algebra, then End(B) ∈ KHaus.

The contravariant functors RO and End give rise to a dual
equivalence between KHaus and DeV.
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Gelfand duality

In Gelfand duality (or Gelfand-Naimark-Stone duality), instead of using the
opens or regular opens, we work with continuous functions.

Gelfand and Naimark worked with continuous complex-valued functions
while Stone worked with real-valued ones. The two approaches are
equivalent.

Similar approaches were developed by the Krein brothers, Kakutani,
Yosida, Henriksen and Johnson.
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Algebra of continuous functions C (X )

Definition

Let X be a compact Hausdorff space.
We denote by C (X ) the set of continuous real-valued functions on X .

With the partial order f ≤ g iff f (x) ≤ g(x) for each x ∈ X and pointwise
addition, multiplication, and scalar multiplication:

C (X ) is a lattice,

f ≤ g implies f + h ≤ g + h for each h ∈ C (X ) (`-group),

0 ≤ f , g implies 0 ≤ fg (`-ring),

C (X ) is an R-algebra,

0 ≤ f and 0 ≤ λ ∈ R imply 0 ≤ λ · f (`-algebra).

for each f ∈ C (X ) there is n ∈ N such that f ≤ n · 1 (that is, the
constant function 1 is a strong order unit, we say C (X ) is bounded).

for each f ∈ C (X ), if f ≤ 1/n for each n ∈ N, then f ≤ 0 (we say
C (X ) is archimedean).
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Bounded archimedean `-algebras

Therefore, C (X ) is a bounded archimedean `-algebra for every
X ∈ KHaus.

Definition

Let ba` be the category of bounded archimedean `-algebras and unital
`-algebra homomorphisms.

Let h : X → Y be a continuous function between compact Hausdorff
spaces. The map C (h) : C (Y )→ C (X ) associating to f ∈ C (Y ) the
function f ◦ h ∈ C (X ) is a ba`-morphism.

Proposition

C : KHaus→ ba` is a contravariant functor.

We want to characterize the A ∈ ba` of the form C (X ) for some
X ∈ KHaus.
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Definition

We can define a norm on each A ∈ ba` by

‖a‖ = inf{λ ∈ R | |a| ≤ λ · 1}.

We say that A ∈ ba` is uniformly complete if it is complete with
respect to ‖·‖.
The full subcategory of ba` given by its uniformly complete objects is
denoted by uba`.

This norm on C (X ) corresponds to the sup norm

‖f ‖ = sup{|f (x)| | x ∈ X}.

Proposition

C (X ) ∈ uba` for each X ∈ KHaus.
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Points as maximal `-ideals

How to recover the points of X from C (X )?

Let X ∈ KHaus and x ∈ X and let Mx = {f ∈ C (X ) | f (x) = 0} ⊆ C (X ).

Mx is a ring-theoretic ideal,

if g ∈ Mx and |f | ≤ |g |, then f ∈ Mx .

A subset of A ∈ ba` having these two properties is called an `-ideal.

Proposition

For each x ∈ X the set Mx is maximal among the proper `-ideals of C (X ).
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The Yosida space

Definition

Let A ∈ ba`.

A proper `-ideal maximal wrt subset inclusion is called a maximal
`-ideal.
The set of maximal `-ideals of A is denoted by YA.

YA can be endowed with a topology whose closed subsets are
Z`(I ) := {x ∈ YA | I ⊆ x} for each `-ideal I .
YA is called the Yosida space of A and YA ∈ KHaus.

Let α : A→ B be a unital `-algebra homomorphism.
The inverse image α−1 : YB → YA is a well-defined continuous
function.
This defines a contravariant functor Y : ba`→ KHaus.
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Adjunction and duality

Theorem

There is a dual adjunction between ba` and KHaus

This adjunction
restricts to a dual equivalence between uba` and KHaus.
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Y

uba` is a reflective subcategory of ba` and CY : ba`→ uba` is a
reflector.
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Key ingredients

Two classic results play a key role in obtaining these results:

Hölder’s theorem is used to show that if M ∈ YA, then A/M ∼= R.

Stone-Weierstrass theorem is used to show that each A ∈ ba` embeds into
C (YA) as a uniformly dense subalgebra.



Key ingredients

Two classic results play a key role in obtaining these results:
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Connecting the dualities

It is a consequence of Isbell, de Vries, and Gelfand dualities that uba`,
KRFrm, and DeV are equivalent categories.

Our goal is to connect these dualities by establishing equivalences between
uba`, KRFrm, and DeV using point-free and choice-free methods.
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From KRFrm to DeV

How to isolate the regular opens in Op(X )?

If U∗ is the pseudocomplement of U in Op(X ), then

U∗ = int(X \ U) and U∗∗ = int(cl(U))

Definition

If L ∈ KRFrm, an element a ∈ L is regular if a∗∗ = a. The set B(L) of
regular elements of L is called the booleanization of L.

Proposition

(B(L),≺) is a de Vries algebra.

B gives rise to a covariant functor from KRFrm to DeV.
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From DeV to KRFrm

How to recover open subsets of X ∈ KHaus from RO(X )?

Each open of X is the union of all the regular opens that are
well-inside it.

We associate to each open the set of all regular opens that are
well-inside it.

Such sets of regular opens are exactly the round ideals of RO(X ).

If B ∈ DeV, we denote by R(B) the frame of round ideals of B
ordered by inclusion.

Proposition

R gives rise to a covariant functor from DeV to KRFrm.

Theorem

The functors B : KRFrm→ DeV and R : DeV→ KRFrm give rise to an
equivalence between KRFrm and DeV.
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Theorem

The functors B : KRFrm→ DeV and R : DeV→ KRFrm give rise to an
equivalence between KRFrm and DeV.
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From uba` to KRFrm

We want to describe the opens of X in terms of C (X ). If U is open of X ,
then the set of continuous function vanishing on X \ U form an
archimedean `-ideal of C (X ).

Definition

An `-ideal I of A ∈ ba` is called archimedean if A/I ∈ ba`.

Archimedean `-ideals have been studied by Banaschewski as the ones
closed in the norm topology. They are exactly the `-ideals that can be
obtained as intersections of maximal `-ideals.

Theorem

The set Arch(A) of all archimedean `-ideals of A ordered by inclusion
forms a compact regular frame.

This yields a covariant functor Arch : uba`→ KRFrm.
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From uba` to DeV

To characterize the regular opens of X in terms of C (X ) it is sufficient to
describe the regular elements of Arch(A). It turns out that they are
exactly the annihilator ideals.

Definition

An `-ideal I of A ∈ ba` is called an annihilator ideal if it is of the form
ann(S) = {a ∈ A | as = 0 for all s ∈ S} for some S ⊆ A.

Theorem

The set of all annihilator ideals of A ordered by inclusion together
with the relation I ≺ J iff ann(I ) + J = A forms a de Vries algebra.

This yields a covariant functor Ann : uba`→ DeV.
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From KRFrm to uba`

Two ways to go in this direction.

L(R) frame of opens of R introduced by Banaschewski.

Given L ∈ KRFrm, the set C(L) of frame homomorphisms L(R)→ L
can be made into a uniformly complete ba`-algebra.

Alternatively,

Given L ∈ KRFrm, let B(L) be the free boolean extension of L.

Consider the Specker algebra R[B(L)].

Take its Dedekind completion D(R[B(L)]).

The well-inside relation ≺ on L can be lifted to D(R[B(L)]). The
desired A ∈ uba` can be obtained as the set of elements of
D(R[B(L)]) satisfying a ≺ a, i.e. its reflexive elements.

We showed that D(R[B(L)]) is the canonical extension of A.
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From DeV to uba`

Also for this direction there are two ways.

If B ∈ DeV, then we can think of it as a boolean frame.

We consider
the algebra C∗(B) of the bounded elements of C(B).

We lift ≺ of B to C∗(B) and we obtain A ∈ uba` as the set of its
reflexive elements.

Alternatively,

Given B ∈ DeV, we consider the Specker algebra R[B].

Take its Dedekind completion D(R[B]).

We obtain A ∈ uba` as the set of reflexive elements of D(R[B]) with
respect to the proximity relation obtained by lifting ≺ of B.

(D(R[B]),≺) is isomorphic to (C∗(B),≺).
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D(R[B(L)]) D(R[B])

C (X )

Op(X ) RO(X )

F (X ) FN(X )

B(X ) N(X )

D(R[B(L)]) is the canonical extension of A.

D(R[B]) is the Dedekind completion of A.
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THANK YOU!



DeV-morphisms

Definition

A de Vries homomorphism between de Vries algebras (B,≺) and (C ,≺) is
a map h : B → C satisfying

h(0) = 0,

h(a ∧ b) = h(a) ∧ h(b),

if a ≺ b, then ¬h(¬a) ≺ h(b),

h(a) =
∨
{h(b) | b ≺ a}.

We denote by DeV the category of de Vries algebras and de Vries
homomorphisms.
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