Connecting dualities for compact Hausdorff spaces

Luca Carai

University of Salerno

joint work with G. Bezhanishvili and P.J. Morandi

New Mexico State University

DOCToR workshop

July 8, 2021

Compact Hausdorff spaces

Compact Hausdorff spaces form one of the most important class of topological spaces.

Compact Hausdorff spaces

Compact Hausdorff spaces form one of the most important class of topological spaces.

There are several different dualities involving the category KHaus of compact Hausdorff spaces and continuous functions. They create bridges between KHaus and categories of algebraic and lattice-theoretic structures. We will concentrate on three dualities:

Compact Hausdorff spaces

Compact Hausdorff spaces form one of the most important class of topological spaces.

There are several different dualities involving the category KHaus of compact Hausdorff spaces and continuous functions. They create bridges between KHaus and categories of algebraic and lattice-theoretic structures. We will concentrate on three dualities:

- Gelfand duality (1940s)

Compact Hausdorff spaces

Compact Hausdorff spaces form one of the most important class of topological spaces.

There are several different dualities involving the category KHaus of compact Hausdorff spaces and continuous functions. They create bridges between KHaus and categories of algebraic and lattice-theoretic structures. We will concentrate on three dualities:

- Gelfand duality (1940s)
- De Vries duality (1962)

Compact Hausdorff spaces

Compact Hausdorff spaces form one of the most important class of topological spaces.

There are several different dualities involving the category KHaus of compact Hausdorff spaces and continuous functions. They create bridges between KHaus and categories of algebraic and lattice-theoretic structures. We will concentrate on three dualities:

- Gelfand duality (1940s)
- De Vries duality (1962)
- Isbell duality (1972)

Isbell duality

Isbell duality is obtained by working with the lattice $\operatorname{Op}(X)$ of open subsets of $X \in$ KHaus.

Isbell duality

Isbell duality is obtained by working with the lattice $\operatorname{Op}(X)$ of open subsets of $X \in$ KHaus.

Proposition

$\mathrm{Op}(X)$ ordered by inclusion is a frame, i.e. a complete lattice that satisfies the join infinite distributive property

$$
V \cap \bigcup_{i \in I} U_{i}=\bigcup_{i \in I}\left(V \cap U_{i}\right)
$$

Isbell duality

Isbell duality is obtained by working with the lattice $\operatorname{Op}(X)$ of open subsets of $X \in$ KHaus.

Proposition

$\mathrm{Op}(X)$ ordered by inclusion is a frame, i.e. a complete lattice that satisfies the join infinite distributive property

$$
V \cap \bigcup_{i \in I} U_{i}=\bigcup_{i \in I}\left(V \cap U_{i}\right)
$$

We want to characterize the frames of the form $\operatorname{Op}(X)$ for some $X \in$ KHaus.

$\mathrm{Op}(X)$ is compact and regular

Since X is compact
if $\bigcup_{i \in I} U_{i}=X$, then there exist $i_{1}, \ldots, i_{n} \in I$ such that $U_{i_{1}} \cup \cdots \cup U_{i_{n}}=X$.

$\mathrm{Op}(X)$ is compact and regular

Since X is compact
if $\bigcup_{i \in I} U_{i}=X$, then there exist $i_{1}, \ldots, i_{n} \in I$ such that $U_{i_{1}} \cup \cdots \cup U_{i_{n}}=X$.

Definition

We can define a relation on $\operatorname{Op}(X)$ by

$$
U \prec V \quad \text { iff } \quad \mathrm{cl}(U) \subseteq V
$$

It is called the well-inside relation.

$\mathrm{Op}(X)$ is compact and regular

Since X is compact
if $\bigcup_{i \in I} U_{i}=X$, then there exist $i_{1}, \ldots, i_{n} \in I$ such that $U_{i_{1}} \cup \cdots \cup U_{i_{n}}=X$.

Definition

We can define a relation on $\operatorname{Op}(X)$ by

$$
U \prec V \quad \text { iff } \quad \mathrm{cl}(U) \subseteq V
$$

It is called the well-inside relation.
If we denote by $U^{*}=\operatorname{int}(X \backslash U)$ the pseudocomplement of U in $\operatorname{Op}(X)$, then $U \prec V$ iff $U^{*} \cup V=X$.

$\mathrm{Op}(X)$ is compact and regular

Since X is compact
if $\bigcup_{i \in I} U_{i}=X$, then there exist $i_{1}, \ldots, i_{n} \in I$ such that $U_{i_{1}} \cup \cdots \cup U_{i_{n}}=X$.

Definition

We can define a relation on $\mathrm{Op}(X)$ by

$$
U \prec V \quad \text { iff } \quad \mathrm{cl}(U) \subseteq V
$$

It is called the well-inside relation.
If we denote by $U^{*}=\operatorname{int}(X \backslash U)$ the pseudocomplement of U in $\operatorname{Op}(X)$, then $U \prec V$ iff $U^{*} \cup V=X$.

If $X \in$ KHaus, then it is regular. So each open subset V can be written as the union of all the opens that are well-inside V, i.e.

$$
V=\bigcup\{U \in \operatorname{Op}(X) \mid U \prec V\}
$$

KRFrm

Definition

Let L be a frame.

- We say L is compact if for any $S \subseteq L$, that $\bigvee S=1_{L}$ implies that there is a finite subset $S^{\prime} \subseteq S$ such that $\bigvee S^{\prime}=1_{L}$.

KRFrm

Definition

Let L be a frame.

- We say L is compact if for any $S \subseteq L$, that $\bigvee S=1_{L}$ implies that there is a finite subset $S^{\prime} \subseteq S$ such that $\bigvee S^{\prime}=1_{L}$.
- We say L is regular if for any $b \in L$, we have $b=\bigvee\{a \in L \mid a \prec b\}$ where $a \prec b$ iff $a^{*} \vee b=1$.

KRFrm

Definition

Let L be a frame.

- We say L is compact if for any $S \subseteq L$, that $\bigvee S=1_{L}$ implies that there is a finite subset $S^{\prime} \subseteq S$ such that $\bigvee S^{\prime}=1_{L}$.
- We say L is regular if for any $b \in L$, we have $b=\bigvee\{a \in L \mid a \prec b\}$ where $a \prec b$ iff $a^{*} \vee b=1$.
- Let KRFrm be the category of compact regular frames and frame homomorphisms.

KRFrm

Definition

Let L be a frame.

- We say L is compact if for any $S \subseteq L$, that $\bigvee S=1_{L}$ implies that there is a finite subset $S^{\prime} \subseteq S$ such that $\bigvee S^{\prime}=1_{L}$.
- We say L is regular if for any $b \in L$, we have $b=\bigvee\{a \in L \mid a \prec b\}$ where $a \prec b$ iff $a^{*} \vee b=1$.
- Let KRFrm be the category of compact regular frames and frame homomorphisms.

If $f: X \rightarrow Y$ is a continuous map, then $f^{-1}: \operatorname{Op}(Y) \rightarrow \operatorname{Op}(X)$ is a frame homomorphism. Thus

KRFrm

Definition

Let L be a frame.

- We say L is compact if for any $S \subseteq L$, that $\bigvee S=1_{L}$ implies that there is a finite subset $S^{\prime} \subseteq S$ such that $\bigvee S^{\prime}=1_{L}$.
- We say L is regular if for any $b \in L$, we have $b=\bigvee\{a \in L \mid a \prec b\}$ where $a \prec b$ iff $a^{*} \vee b=1$.
- Let KRFrm be the category of compact regular frames and frame homomorphisms.

If $f: X \rightarrow Y$ is a continuous map, then $f^{-1}: \operatorname{Op}(Y) \rightarrow \operatorname{Op}(X)$ is a frame homomorphism. Thus

Proposition

Op : KHaus \rightarrow KRFrm is a contravariant functor.

Points of a frame

How to recover the points of X from $\operatorname{Op}(X)$?

Points of a frame

How to recover the points of X from $\operatorname{Op}(X)$?
Let $x \in X$, we can consider the set $p_{x}=\{U \in O p(X) \mid x \in U\} \subseteq O p(X)$ of the open subsets containing x.

Points of a frame

How to recover the points of X from $\operatorname{Op}(X)$?
Let $x \in X$, we can consider the set $p_{x}=\{U \in O p(X) \mid x \in U\} \subseteq O p(X)$ of the open subsets containing x.

- p_{X} is a proper filter of $\operatorname{Op}(X)$,

Points of a frame

How to recover the points of X from $\operatorname{Op}(X)$?
Let $x \in X$, we can consider the set $p_{x}=\{U \in O p(X) \mid x \in U\} \subseteq O p(X)$ of the open subsets containing x.

- p_{X} is a proper filter of $\operatorname{Op}(X)$,
- p_{x} is a completely prime filter, i.e. $x \in \bigcup_{i \in I} U_{i}$ implies $x \in U_{j}$ for some $j \in I$.

Points of a frame

How to recover the points of X from $\operatorname{Op}(X)$?
Let $x \in X$, we can consider the set $p_{x}=\{U \in O p(X) \mid x \in U\} \subseteq O p(X)$ of the open subsets containing x.

- p_{X} is a proper filter of $\operatorname{Op}(X)$,
- p_{x} is a completely prime filter, i.e. $x \in \bigcup_{i \in I} U_{i}$ implies $x \in U_{j}$ for some $j \in I$.

Definition

Let L be a frame.
The completely prime filters of L are called the points of L. The set of points of L is denoted by $\operatorname{pt}(L)$.

Points of a frame

How to recover the points of X from $\operatorname{Op}(X)$?
Let $x \in X$, we can consider the set $p_{x}=\{U \in O p(X) \mid x \in U\} \subseteq O p(X)$ of the open subsets containing x.

- p_{X} is a proper filter of $\operatorname{Op}(X)$,
- p_{x} is a completely prime filter, i.e. $x \in \bigcup_{i \in I} U_{i}$ implies $x \in U_{j}$ for some $j \in I$.

Definition

Let L be a frame.
The completely prime filters of L are called the points of L. The set of points of L is denoted by $\operatorname{pt}(L)$.

Points of L can be equivalently defined as frame homomorphisms $L \rightarrow 2$ or as meet-prime elements of L.

$\operatorname{pt}(L)$

Definition

Let L be a frame. We can define a topology on $\operatorname{pt}(L)$ whose opens are

$$
\{p \in \operatorname{pt}(L) \mid a \in p\}
$$

where a ranges over all the elements of L.

$\operatorname{pt}(L)$

Definition

Let L be a frame. We can define a topology on $\operatorname{pt}(L)$ whose opens are

$$
\{p \in \operatorname{pt}(L) \mid a \in p\}
$$

where a ranges over all the elements of L.

Proposition

If $L \in \mathbf{K R F r m}$, then $\operatorname{pt}(L) \in \mathbf{K H a u s}$.

Definition

Let L be a frame. We can define a topology on $\operatorname{pt}(L)$ whose opens are

$$
\{p \in \operatorname{pt}(L) \mid a \in p\}
$$

where a ranges over all the elements of L.

Proposition

If $L \in \mathbf{K R F r m}$, then $\operatorname{pt}(L) \in$ KHaus.
If $\alpha: L \rightarrow M$ is a frame homomorphism, the inverse image function $\alpha^{-1}: \operatorname{pt}(M) \rightarrow \operatorname{pt}(L)$ is a continuous function.

Proposition

pt $:$ KRFrm \rightarrow KHaus is a contravariant functor.

Isbell duality

Theorem (Isbell 1972)
The contravariant functors Op and pt give rise to a dual equivalence between KHaus and KRFrm.

De Vries duality

De Vries duality is obtained by working with the regular open subsets.

De Vries duality

De Vries duality is obtained by working with the regular open subsets.

Definition

An open subset U of a topological space X is called regular open if $\operatorname{int}(\mathrm{cl}(U))=U$. We denote the set of all regular opens by $\mathrm{RO}(X)$.

De Vries duality

De Vries duality is obtained by working with the regular open subsets.

Definition

An open subset U of a topological space X is called regular open if $\operatorname{int}(\mathrm{cl}(U))=U$. We denote the set of all regular opens by $\mathrm{RO}(X)$.

Proposition (Tarski)

$\mathrm{RO}(X)$ ordered by inclusion is a complete boolean algebra where

$$
\begin{aligned}
& \bigvee \mathcal{S}=\operatorname{int}(\mathrm{cl}(\bigcup \mathcal{S})) \\
& \neg U=\operatorname{int}(X \backslash U)
\end{aligned}
$$

Well-inside relation on $\mathrm{RO}(X)$

Let $X \in$ KHaus. The complete boolean algebra structure on $\mathrm{RO}(X)$ is not enough to recover the space X.

Well-inside relation on $\mathrm{RO}(X)$

Let $X \in$ KHaus. The complete boolean algebra structure on $\mathrm{RO}(X)$ is not enough to recover the space X.

We also need to consider the well-inside relation restricted to $\mathrm{RO}(X)$. That is, $U \prec V$ iff $\operatorname{cl}(U) \subseteq V$.

Well-inside relation on $\mathrm{RO}(X)$

Let $X \in$ KHaus. The complete boolean algebra structure on $\mathrm{RO}(X)$ is not enough to recover the space X.

We also need to consider the well-inside relation restricted to $\mathrm{RO}(X)$. That is, $U \prec V$ iff $\mathrm{cl}(U) \subseteq V$.

Proposition

- $\emptyset \prec \emptyset$,
- $U \prec V \Rightarrow U \subseteq V$,
- $U \subseteq V \prec W \subseteq O \Rightarrow U \prec O$,
- $U \prec V, U \prec W \Rightarrow U \prec V \cap W$,
- $U \prec V \Rightarrow \neg V \prec \neg U$
- $U \prec V \Rightarrow \exists W \in \operatorname{RO}(X)$ such that $U \prec W \prec V$,
- $V \neq \emptyset \Rightarrow \exists W \in \mathrm{RO}(X) \backslash\{\emptyset\}$ such that $W \prec V$.

De Vries algebras

Definition

A de Vries algebra is a complete boolean algebra B together with a relation \prec such that

- $0 \prec 0$,
- $a \prec b \Rightarrow a \leq b$,
- $a \leq b \prec c \leq d \Rightarrow a \prec d$,
- $a \prec b, a \prec c \Rightarrow a \prec b \wedge c$,
- $a \prec b \Rightarrow \neg b \prec \neg a$,
- $a \prec b \Rightarrow \exists c \in B$ such that $a \prec c \prec b$,
- $b \neq 0 \Rightarrow \exists c \in B \backslash\{0\}$ such that $c \prec b$.

DeV

If $f: X \rightarrow Y$ is a continuous function between compact Hausdorff spaces, $U \in \mathrm{RO}(Y)$ does not necessarily imply $f^{-1}(U) \in \mathrm{RO}(X)$.

DeV

If $f: X \rightarrow Y$ is a continuous function between compact Hausdorff spaces, $U \in \mathrm{RO}(Y)$ does not necessarily imply $f^{-1}(U) \in \mathrm{RO}(X)$.
To get a regular open, we need to take its regularization $\operatorname{int}\left(\mathrm{cl}\left(f^{-1}(U)\right)\right)$.

DeV

If $f: X \rightarrow Y$ is a continuous function between compact Hausdorff spaces, $U \in \mathrm{RO}(Y)$ does not necessarily imply $f^{-1}(U) \in \mathrm{RO}(X)$.
To get a regular open, we need to take its regularization $\operatorname{int}\left(\mathrm{cl}\left(f^{-1}(U)\right)\right)$. Consequently, the morphisms in the category DeV of de Vries algebras do not necessarily preserve all the boolean operations. Moreover, the composition in $\mathbf{D e V}$ is not the usual composition of functions.

DeV

If $f: X \rightarrow Y$ is a continuous function between compact Hausdorff spaces, $U \in \mathrm{RO}(Y)$ does not necessarily imply $f^{-1}(U) \in \mathrm{RO}(X)$.

To get a regular open, we need to take its regularization $\operatorname{int}\left(\mathrm{cl}\left(f^{-1}(U)\right)\right)$. Consequently, the morphisms in the category DeV of de Vries algebras do not necessarily preserve all the boolean operations. Moreover, the composition in $\mathbf{D e V}$ is not the usual composition of functions.

Proposition

RO : KHaus $\rightarrow \mathbf{D e V}$ is a contravariant functor.

Points as maximal round filters

How to recover the points of X from $\mathrm{RO}(X)$?

Points as maximal round filters

How to recover the points of X from $\mathrm{RO}(X)$?
Let $x \in X$, we can consider the set $E_{x}=\{U \in \mathrm{RO}(X) \mid x \in U\} \subseteq \mathrm{RO}(X)$ of regular opens containing x.

Points as maximal round filters

How to recover the points of X from $\mathrm{RO}(X)$?
Let $x \in X$, we can consider the set $E_{X}=\{U \in \mathrm{RO}(X) \mid x \in U\} \subseteq \mathrm{RO}(X)$ of regular opens containing x.

- E_{X} is a proper filter of $\mathrm{RO}(X)$,

Points as maximal round filters

How to recover the points of X from $\mathrm{RO}(X)$?
Let $x \in X$, we can consider the set $E_{X}=\{U \in \mathrm{RO}(X) \mid x \in U\} \subseteq \mathrm{RO}(X)$ of regular opens containing x.

- E_{X} is a proper filter of $\mathrm{RO}(X)$,
- E_{X} is a round filter, i.e. if $U \in E_{x}$, then there is $V \prec U$ such that $V \in E_{x}$.

Points as maximal round filters

How to recover the points of X from $\mathrm{RO}(X)$?
Let $x \in X$, we can consider the set $E_{x}=\{U \in \mathrm{RO}(X) \mid x \in U\} \subseteq \mathrm{RO}(X)$ of regular opens containing x.

- E_{X} is a proper filter of $\mathrm{RO}(X)$,
- E_{X} is a round filter, i.e. if $U \in E_{X}$, then there is $V \prec U$ such that $V \in E_{x}$.

Proposition

For each $x \in X$, the set E_{X} is maximal among proper round filters of $\mathrm{RO}(X)$.

Ends

Definition

A maximal round filter of a de Vries algebra B is called an end. We denote the set of all ends of B by $\operatorname{End}(B)$.

Ends

Definition

A maximal round filter of a de Vries algebra B is called an end. We denote the set of all ends of B by $\operatorname{End}(B)$. We can define on $\operatorname{End}(B)$ the topology generated by the subsets of the form

$$
\{E \in \operatorname{End}(B) \mid a \in E\}
$$

for $a \in B$.

Ends

Definition

A maximal round filter of a de Vries algebra B is called an end. We denote the set of all ends of B by $\operatorname{End}(B)$. We can define on $\operatorname{End}(B)$ the topology generated by the subsets of the form

$$
\{E \in \operatorname{End}(B) \mid a \in E\}
$$

for $a \in B$.

Theorem (De Vries 1962)

- If B is a de Vries algebra, then $\operatorname{End}(B) \in$ KHaus.
- The contravariant functors RO and End give rise to a dual equivalence between KHaus and $\mathbf{D e V}$.

Gelfand duality

In Gelfand duality (or Gelfand-Naimark-Stone duality), instead of using the opens or regular opens, we work with continuous functions.

Gelfand duality

In Gelfand duality (or Gelfand-Naimark-Stone duality), instead of using the opens or regular opens, we work with continuous functions.

Gelfand and Naimark worked with continuous complex-valued functions while Stone worked with real-valued ones. The two approaches are equivalent.

Gelfand duality

In Gelfand duality (or Gelfand-Naimark-Stone duality), instead of using the opens or regular opens, we work with continuous functions.

Gelfand and Naimark worked with continuous complex-valued functions while Stone worked with real-valued ones. The two approaches are equivalent.

Similar approaches were developed by the Krein brothers, Kakutani, Yosida, Henriksen and Johnson.

Algebra of continuous functions $C(X)$

Definition

Let X be a compact Hausdorff space.
We denote by $C(X)$ the set of continuous real-valued functions on X.
With the partial order $f \leq g$ iff $f(x) \leq g(x)$ for each $x \in X$ and pointwise addition, multiplication, and scalar multiplication:

Algebra of continuous functions $C(X)$

Definition

Let X be a compact Hausdorff space.
We denote by $C(X)$ the set of continuous real-valued functions on X.
With the partial order $f \leq g$ iff $f(x) \leq g(x)$ for each $x \in X$ and pointwise addition, multiplication, and scalar multiplication:

- $C(X)$ is a lattice,

Algebra of continuous functions $C(X)$

Definition

Let X be a compact Hausdorff space.
We denote by $C(X)$ the set of continuous real-valued functions on X.
With the partial order $f \leq g$ iff $f(x) \leq g(x)$ for each $x \in X$ and pointwise addition, multiplication, and scalar multiplication:

- $C(X)$ is a lattice,
- $f \leq g$ implies $f+h \leq g+h$ for each $h \in C(X)$ (ℓ-group),

Algebra of continuous functions $C(X)$

Definition

Let X be a compact Hausdorff space.
We denote by $C(X)$ the set of continuous real-valued functions on X.
With the partial order $f \leq g$ iff $f(x) \leq g(x)$ for each $x \in X$ and pointwise addition, multiplication, and scalar multiplication:

- $C(X)$ is a lattice,
- $f \leq g$ implies $f+h \leq g+h$ for each $h \in C(X)$ (ℓ-group),
- $0 \leq f, g$ implies $0 \leq f g$ (ℓ-ring),

Algebra of continuous functions $C(X)$

Definition

Let X be a compact Hausdorff space.
We denote by $C(X)$ the set of continuous real-valued functions on X.
With the partial order $f \leq g$ iff $f(x) \leq g(x)$ for each $x \in X$ and pointwise addition, multiplication, and scalar multiplication:

- $C(X)$ is a lattice,
- $f \leq g$ implies $f+h \leq g+h$ for each $h \in C(X)$ (ℓ-group),
- $0 \leq f, g$ implies $0 \leq f g$ (ℓ-ring),
- $C(X)$ is an \mathbb{R}-algebra,

Algebra of continuous functions $C(X)$

Definition

Let X be a compact Hausdorff space.
We denote by $C(X)$ the set of continuous real-valued functions on X.
With the partial order $f \leq g$ iff $f(x) \leq g(x)$ for each $x \in X$ and pointwise addition, multiplication, and scalar multiplication:

- $C(X)$ is a lattice,
- $f \leq g$ implies $f+h \leq g+h$ for each $h \in C(X)$ (ℓ-group),
- $0 \leq f, g$ implies $0 \leq f g$ (ℓ-ring),
- $C(X)$ is an \mathbb{R}-algebra,
- $0 \leq f$ and $0 \leq \lambda \in \mathbb{R}$ imply $0 \leq \lambda \cdot f$ (ℓ-algebra).

Algebra of continuous functions $C(X)$

Definition

Let X be a compact Hausdorff space.
We denote by $C(X)$ the set of continuous real-valued functions on X.
With the partial order $f \leq g$ iff $f(x) \leq g(x)$ for each $x \in X$ and pointwise addition, multiplication, and scalar multiplication:

- $C(X)$ is a lattice,
- $f \leq g$ implies $f+h \leq g+h$ for each $h \in C(X)$ (ℓ-group),
- $0 \leq f, g$ implies $0 \leq f g$ (ℓ-ring),
- $C(X)$ is an \mathbb{R}-algebra,
- $0 \leq f$ and $0 \leq \lambda \in \mathbb{R}$ imply $0 \leq \lambda \cdot f$ (ℓ-algebra).
- for each $f \in C(X)$ there is $n \in \mathbb{N}$ such that $f \leq n \cdot 1$ (that is, the constant function 1 is a strong order unit, we say $C(X)$ is bounded).

Algebra of continuous functions $C(X)$

Definition

Let X be a compact Hausdorff space.
We denote by $C(X)$ the set of continuous real-valued functions on X.
With the partial order $f \leq g$ iff $f(x) \leq g(x)$ for each $x \in X$ and pointwise addition, multiplication, and scalar multiplication:

- $C(X)$ is a lattice,
- $f \leq g$ implies $f+h \leq g+h$ for each $h \in C(X)$ (ℓ-group),
- $0 \leq f, g$ implies $0 \leq f g$ (ℓ-ring),
- $C(X)$ is an \mathbb{R}-algebra,
- $0 \leq f$ and $0 \leq \lambda \in \mathbb{R}$ imply $0 \leq \lambda \cdot f$ (ℓ-algebra).
- for each $f \in C(X)$ there is $n \in \mathbb{N}$ such that $f \leq n \cdot 1$ (that is, the constant function 1 is a strong order unit, we say $C(X)$ is bounded).
- for each $f \in C(X)$, if $f \leq 1 / n$ for each $n \in \mathbb{N}$, then $f \leq 0$ (we say $C(X)$ is archimedean).

Bounded archimedean ℓ-algebras

Therefore, $C(X)$ is a bounded archimedean ℓ-algebra for every $X \in$ KHaus.

Bounded archimedean ℓ-algebras

Therefore, $C(X)$ is a bounded archimedean ℓ-algebra for every $X \in$ KHaus.

Definition

Let ba ℓ be the category of bounded archimedean ℓ-algebras and unital ℓ-algebra homomorphisms.

Bounded archimedean ℓ-algebras

Therefore, $C(X)$ is a bounded archimedean ℓ-algebra for every $X \in$ KHaus.

Definition

Let ba ℓ be the category of bounded archimedean ℓ-algebras and unital ℓ-algebra homomorphisms.

Let $h: X \rightarrow Y$ be a continuous function between compact Hausdorff spaces. The map $C(h): C(Y) \rightarrow C(X)$ associating to $f \in C(Y)$ the function $f \circ h \in C(X)$ is a $\mathbf{b a} \ell$-morphism.

Bounded archimedean ℓ-algebras

Therefore, $C(X)$ is a bounded archimedean ℓ-algebra for every $X \in$ KHaus.

Definition

Let ba ℓ be the category of bounded archimedean ℓ-algebras and unital ℓ-algebra homomorphisms.

Let $h: X \rightarrow Y$ be a continuous function between compact Hausdorff spaces. The map $C(h): C(Y) \rightarrow C(X)$ associating to $f \in C(Y)$ the function $f \circ h \in C(X)$ is a ba ℓ-morphism.

Proposition

$C:$ KHaus $\rightarrow \mathbf{b a l}$ is a contravariant functor.

Bounded archimedean ℓ-algebras

Therefore, $C(X)$ is a bounded archimedean ℓ-algebra for every $X \in$ KHaus.

Definition

Let ba ℓ be the category of bounded archimedean ℓ-algebras and unital ℓ-algebra homomorphisms.

Let $h: X \rightarrow Y$ be a continuous function between compact Hausdorff spaces. The map $C(h): C(Y) \rightarrow C(X)$ associating to $f \in C(Y)$ the function $f \circ h \in C(X)$ is a ba ℓ-morphism.

Proposition

$C:$ KHaus $\rightarrow \mathbf{b a} \ell$ is a contravariant functor.
We want to characterize the $A \in \mathbf{b} \mathbf{a} \ell$ of the form $C(X)$ for some $X \in$ KHaus.

Uniformly complete bounded archimedean ℓ-algebras

Definition

- We can define a norm on each $A \in \mathbf{b a} \ell$ by

$$
\|a\|=\inf \{\lambda \in \mathbb{R}| | a \mid \leq \lambda \cdot 1\} .
$$

Uniformly complete bounded archimedean ℓ-algebras

Definition

- We can define a norm on each $A \in \mathbf{b a} \ell$ by

$$
\|a\|=\inf \{\lambda \in \mathbb{R}| | a \mid \leq \lambda \cdot 1\} .
$$

- We say that $A \in \mathbf{b a} \ell$ is uniformly complete if it is complete with respect to $\|\cdot\|$.

Uniformly complete bounded archimedean ℓ-algebras

Definition

- We can define a norm on each $A \in \mathbf{b a} \ell$ by

$$
\|a\|=\inf \{\lambda \in \mathbb{R}| | a \mid \leq \lambda \cdot 1\} .
$$

- We say that $A \in \mathbf{b a} \ell$ is uniformly complete if it is complete with respect to $\|\cdot\|$.
- The full subcategory of $\mathbf{b a} \ell$ given by its uniformly complete objects is denoted by uba ℓ.

Uniformly complete bounded archimedean ℓ-algebras

Definition

- We can define a norm on each $A \in \mathbf{b a} \ell$ by

$$
\|a\|=\inf \{\lambda \in \mathbb{R}| | a \mid \leq \lambda \cdot 1\} .
$$

- We say that $A \in \mathbf{b a} \ell$ is uniformly complete if it is complete with respect to $\|\cdot\|$.
- The full subcategory of bal given by its uniformly complete objects is denoted by uba ℓ.

This norm on $C(X)$ corresponds to the sup norm

$$
\|f\|=\sup \{|f(x)| \mid x \in X\}
$$

Uniformly complete bounded archimedean ℓ-algebras

Definition

- We can define a norm on each $A \in \mathbf{b a} \ell$ by

$$
\|a\|=\inf \{\lambda \in \mathbb{R}| | a \mid \leq \lambda \cdot 1\} .
$$

- We say that $A \in \mathbf{b a} \ell$ is uniformly complete if it is complete with respect to $\|\cdot\|$.
- The full subcategory of $\mathbf{b a} \ell$ given by its uniformly complete objects is denoted by uba ℓ.

This norm on $C(X)$ corresponds to the sup norm

$$
\|f\|=\sup \{|f(x)| \mid x \in X\}
$$

Proposition

$C(X) \in \mathbf{u b a} \ell$ for each $X \in$ KHaus.

Points as maximal ℓ-ideals

How to recover the points of X from $C(X)$?

Points as maximal ℓ-ideals

How to recover the points of X from $C(X)$?
Let $X \in \mathbf{K H a u s}$ and $x \in X$ and let $M_{x}=\{f \in C(X) \mid f(x)=0\} \subseteq C(X)$.

Points as maximal ℓ-ideals

How to recover the points of X from $C(X)$?
Let $X \in$ KHaus and $x \in X$ and let $M_{x}=\{f \in C(X) \mid f(x)=0\} \subseteq C(X)$.

- M_{x} is a ring-theoretic ideal,

Points as maximal ℓ-ideals

How to recover the points of X from $C(X)$?
Let $X \in$ KHaus and $x \in X$ and let $M_{x}=\{f \in C(X) \mid f(x)=0\} \subseteq C(X)$.

- M_{x} is a ring-theoretic ideal,
- if $g \in M_{x}$ and $|f| \leq|g|$, then $f \in M_{x}$.

Points as maximal ℓ-ideals

How to recover the points of X from $C(X)$?
Let $X \in$ KHaus and $x \in X$ and let $M_{x}=\{f \in C(X) \mid f(x)=0\} \subseteq C(X)$.

- M_{x} is a ring-theoretic ideal,
- if $g \in M_{x}$ and $|f| \leq|g|$, then $f \in M_{x}$.

A subset of $A \in \mathbf{b a} \ell$ having these two properties is called an ℓ-ideal.

Points as maximal ℓ-ideals

How to recover the points of X from $C(X)$?
Let $X \in$ KHaus and $x \in X$ and let $M_{x}=\{f \in C(X) \mid f(x)=0\} \subseteq C(X)$.

- M_{x} is a ring-theoretic ideal,
- if $g \in M_{x}$ and $|f| \leq|g|$, then $f \in M_{x}$.

A subset of $A \in \mathbf{b a} \ell$ having these two properties is called an ℓ-ideal.

Proposition

For each $x \in X$ the set M_{x} is maximal among the proper ℓ-ideals of $C(X)$.

The Yosida space

Definition

Let $A \in \mathbf{b a} \ell$.

The Yosida space

Definition

Let $A \in \mathbf{b a} \boldsymbol{\ell}$.

- A proper ℓ-ideal maximal wrt subset inclusion is called a maximal ℓ-ideal.
The set of maximal ℓ-ideals of A is denoted by Y_{A}.

The Yosida space

Definition

Let $A \in \mathbf{b a} \boldsymbol{\ell}$.

- A proper ℓ-ideal maximal wrt subset inclusion is called a maximal ℓ-ideal.
The set of maximal ℓ-ideals of A is denoted by Y_{A}.
- Y_{A} can be endowed with a topology whose closed subsets are $Z_{\ell}(I):=\left\{x \in Y_{A} \mid I \subseteq x\right\}$ for each ℓ-ideal I.

The Yosida space

Definition

Let $A \in \mathbf{b a} \boldsymbol{\ell}$.

- A proper ℓ-ideal maximal wrt subset inclusion is called a maximal ℓ-ideal.
The set of maximal ℓ-ideals of A is denoted by Y_{A}.
- Y_{A} can be endowed with a topology whose closed subsets are $Z_{\ell}(I):=\left\{x \in Y_{A} \mid I \subseteq x\right\}$ for each ℓ-ideal I. Y_{A} is called the Yosida space of A and $Y_{A} \in$ KHaus.

The Yosida space

Definition

Let $A \in \mathbf{b a} \boldsymbol{\ell}$.

- A proper ℓ-ideal maximal wrt subset inclusion is called a maximal ℓ-ideal.
The set of maximal ℓ-ideals of A is denoted by Y_{A}.
- Y_{A} can be endowed with a topology whose closed subsets are $Z_{\ell}(I):=\left\{x \in Y_{A} \mid I \subseteq x\right\}$ for each ℓ-ideal I. Y_{A} is called the Yosida space of A and $Y_{A} \in$ KHaus.
- Let $\alpha: A \rightarrow B$ be a unital ℓ-algebra homomorphism. The inverse image $\alpha^{-1}: Y_{B} \rightarrow Y_{A}$ is a well-defined continuous function.

The Yosida space

Definition

Let $A \in \mathbf{b a} \boldsymbol{\ell}$.

- A proper ℓ-ideal maximal wrt subset inclusion is called a maximal ℓ-ideal.
The set of maximal ℓ-ideals of A is denoted by Y_{A}.
- Y_{A} can be endowed with a topology whose closed subsets are $Z_{\ell}(I):=\left\{x \in Y_{A} \mid I \subseteq x\right\}$ for each ℓ-ideal I. Y_{A} is called the Yosida space of A and $Y_{A} \in$ KHaus.
- Let $\alpha: A \rightarrow B$ be a unital ℓ-algebra homomorphism. The inverse image $\alpha^{-1}: Y_{B} \rightarrow Y_{A}$ is a well-defined continuous function.
This defines a contravariant functor $Y: \mathbf{b a} \ell \rightarrow$ KHaus.

Adjunction and duality

Theorem

There is a dual adjunction between ba $\boldsymbol{\ell}$ and KHaus

$$
\text { ba } \ell \stackrel{C}{Y} \text { KHaus }
$$

Adjunction and duality

Theorem

There is a dual adjunction between ba ℓ and KHaus This adjunction restricts to a dual equivalence between uba ℓ and KHaus.

Adjunction and duality

Theorem

There is a dual adjunction between ba ℓ and KHaus This adjunction restricts to a dual equivalence between uba ℓ and KHaus.

$\mathbf{u b a} \ell$ is a reflective subcategory of $\mathbf{b a} \ell$ and $C Y: \mathbf{b a} \ell \rightarrow \mathbf{u b a} \ell$ is a reflector.

Key ingredients

Two classic results play a key role in obtaining these results:

Key ingredients

Two classic results play a key role in obtaining these results:
Hölder's theorem is used to show that if $M \in Y_{A}$, then $A / M \cong \mathbb{R}$.

Key ingredients

Two classic results play a key role in obtaining these results:
Hölder's theorem is used to show that if $M \in Y_{A}$, then $A / M \cong \mathbb{R}$.
Stone-Weierstrass theorem is used to show that each $A \in \mathbf{b a} \ell$ embeds into $C\left(Y_{A}\right)$ as a uniformly dense subalgebra.

Connecting the dualities

It is a consequence of Isbell, de Vries, and Gelfand dualities that uba ℓ, KRFrm, and DeV are equivalent categories.

Connecting the dualities

It is a consequence of Isbell, de Vries, and Gelfand dualities that uba ℓ, KRFrm, and $\mathbf{D e V}$ are equivalent categories.

Our goal is to connect these dualities by establishing equivalences between uba ℓ, KRFrm, and $\mathbf{D e V}$ using point-free and choice-free methods.

From KRFrm to DeV

How to isolate the regular opens in $\operatorname{Op}(X)$?

From KRFrm to $\mathbf{D e V}$

How to isolate the regular opens in $\operatorname{Op}(X)$?
If U^{*} is the pseudocomplement of U in $\operatorname{Op}(X)$, then

$$
U^{*}=\operatorname{int}(X \backslash U) \quad \text { and } \quad U^{* *}=\operatorname{int}(\operatorname{cl}(U))
$$

From KRFrm to $\mathbf{D e V}$

How to isolate the regular opens in $\operatorname{Op}(X)$?
If U^{*} is the pseudocomplement of U in $\operatorname{Op}(X)$, then

$$
U^{*}=\operatorname{int}(X \backslash U) \quad \text { and } \quad U^{* *}=\operatorname{int}(\operatorname{cl}(U))
$$

Definition

If $L \in \mathbf{K R F r m}$, an element $a \in L$ is regular if $a^{* *}=a$. The set $\mathfrak{B}(L)$ of regular elements of L is called the booleanization of L.

From KRFrm to $\mathbf{D e V}$

How to isolate the regular opens in $\operatorname{Op}(X)$?
If U^{*} is the pseudocomplement of U in $\operatorname{Op}(X)$, then

$$
U^{*}=\operatorname{int}(X \backslash U) \quad \text { and } \quad U^{* *}=\operatorname{int}(\operatorname{cl}(U))
$$

Definition

If $L \in \mathbf{K R F r m}$, an element $a \in L$ is regular if $a^{* *}=a$. The set $\mathfrak{B}(L)$ of regular elements of L is called the booleanization of L.

Proposition

- $(\mathfrak{B}(L), \prec)$ is a de Vries algebra.

From KRFrm to $\mathbf{D e V}$

How to isolate the regular opens in $\operatorname{Op}(X)$?
If U^{*} is the pseudocomplement of U in $\operatorname{Op}(X)$, then

$$
U^{*}=\operatorname{int}(X \backslash U) \quad \text { and } \quad U^{* *}=\operatorname{int}(\operatorname{cl}(U))
$$

Definition

If $L \in \mathbf{K R F r m}$, an element $a \in L$ is regular if $a^{* *}=a$. The set $\mathfrak{B}(L)$ of regular elements of L is called the booleanization of L.

Proposition

- $(\mathfrak{B}(L), \prec)$ is a de Vries algebra.
- \mathfrak{B} gives rise to a covariant functor from KRFrm to $\mathbf{D e V}$.

From DeV to KRFrm

How to recover open subsets of $X \in$ KHaus from $\mathrm{RO}(X)$?

From DeV to KRFrm

How to recover open subsets of $X \in$ KHaus from $\mathrm{RO}(X)$?

- Each open of X is the union of all the regular opens that are well-inside it.

From DeV to KRFrm

How to recover open subsets of $X \in$ KHaus from $\mathrm{RO}(X)$?

- Each open of X is the union of all the regular opens that are well-inside it.
- We associate to each open the set of all regular opens that are well-inside it.

From DeV to KRFrm

How to recover open subsets of $X \in \mathrm{KHaus}$ from $\mathrm{RO}(X)$?

- Each open of X is the union of all the regular opens that are well-inside it.
- We associate to each open the set of all regular opens that are well-inside it.
- Such sets of regular opens are exactly the round ideals of $\mathrm{RO}(X)$.

From DeV to KRFrm

How to recover open subsets of $X \in$ KHaus from $\mathrm{RO}(X)$?

- Each open of X is the union of all the regular opens that are well-inside it.
- We associate to each open the set of all regular opens that are well-inside it.
- Such sets of regular opens are exactly the round ideals of $\mathrm{RO}(X)$.
- If $B \in \mathbf{D e V}$, we denote by $\mathfrak{R}(B)$ the frame of round ideals of B ordered by inclusion.

From $\mathbf{D e V}$ to KRFrm

How to recover open subsets of $X \in$ KHaus from $\mathrm{RO}(X)$?

- Each open of X is the union of all the regular opens that are well-inside it.
- We associate to each open the set of all regular opens that are well-inside it.
- Such sets of regular opens are exactly the round ideals of $\mathrm{RO}(X)$.
- If $B \in \mathbf{D e V}$, we denote by $\mathfrak{R}(B)$ the frame of round ideals of B ordered by inclusion.

Proposition

\mathfrak{R} gives rise to a covariant functor from $\mathbf{D e V}$ to KRFrm.

From $\mathbf{D e V}$ to KRFrm

How to recover open subsets of $X \in$ KHaus from $\mathrm{RO}(X)$?

- Each open of X is the union of all the regular opens that are well-inside it.
- We associate to each open the set of all regular opens that are well-inside it.
- Such sets of regular opens are exactly the round ideals of $\mathrm{RO}(X)$.
- If $B \in \mathbf{D e V}$, we denote by $\mathfrak{R}(B)$ the frame of round ideals of B ordered by inclusion.

Proposition

\mathfrak{R} gives rise to a covariant functor from $\mathbf{D e V}$ to KRFrm.

Theorem

The functors $\mathfrak{B}: \mathbf{K R F r m} \rightarrow \mathbf{D e V}$ and $\mathfrak{R}: \mathbf{D e V} \rightarrow \mathbf{K R F r m}$ give rise to an equivalence between KRFrm and DeV.

From ubal to KRFrm

We want to describe the opens of X in terms of $C(X)$. If U is open of X, then the set of continuous function vanishing on $X \backslash U$ form an archimedean ℓ-ideal of $C(X)$.

From ubal to KRFrm

We want to describe the opens of X in terms of $C(X)$. If U is open of X, then the set of continuous function vanishing on $X \backslash U$ form an archimedean ℓ-ideal of $C(X)$.

Definition

An ℓ-ideal I of $A \in \mathbf{b a} \boldsymbol{\ell}$ is called archimedean if $A / I \in \mathbf{b} \mathbf{} \boldsymbol{\ell}$.

From ubal to KRFrm

We want to describe the opens of X in terms of $C(X)$. If U is open of X, then the set of continuous function vanishing on $X \backslash U$ form an archimedean ℓ-ideal of $C(X)$.

Definition

An ℓ-ideal I of $A \in \mathbf{b a} \boldsymbol{\ell}$ is called archimedean if $A / I \in \mathbf{b} \mathbf{} \boldsymbol{\ell}$.
Archimedean ℓ-ideals have been studied by Banaschewski as the ones closed in the norm topology. They are exactly the ℓ-ideals that can be obtained as intersections of maximal ℓ-ideals.

From ubal to KRFrm

We want to describe the opens of X in terms of $C(X)$. If U is open of X, then the set of continuous function vanishing on $X \backslash U$ form an archimedean ℓ-ideal of $C(X)$.

Definition
 An ℓ-ideal I of $A \in \mathbf{b} \mathbf{a} \ell$ is called archimedean if $A / I \in \mathbf{b} \mathbf{} \ell$.

Archimedean ℓ-ideals have been studied by Banaschewski as the ones closed in the norm topology. They are exactly the ℓ-ideals that can be obtained as intersections of maximal ℓ-ideals.

Theorem

- The set $\operatorname{Arch}(A)$ of all archimedean ℓ-ideals of A ordered by inclusion forms a compact regular frame.
- This yields a covariant functor Arch : uba $\ell \rightarrow$ KRFrm.

From uba ℓ to $\mathbf{D e V}$

To characterize the regular opens of X in terms of $C(X)$ it is sufficient to describe the regular elements of $\operatorname{Arch}(A)$. It turns out that they are exactly the annihilator ideals.

From ubal to DeV

To characterize the regular opens of X in terms of $C(X)$ it is sufficient to describe the regular elements of $\operatorname{Arch}(A)$. It turns out that they are exactly the annihilator ideals.

Definition

An ℓ-ideal I of $A \in \mathbf{b a} \ell$ is called an annihilator ideal if it is of the form $\operatorname{ann}(S)=\{a \in A \mid a s=0$ for all $s \in S\}$ for some $S \subseteq A$.

From uba ℓ to $\mathbf{D e V}$

To characterize the regular opens of X in terms of $C(X)$ it is sufficient to describe the regular elements of $\operatorname{Arch}(A)$. It turns out that they are exactly the annihilator ideals.

Definition

An ℓ-ideal I of $A \in \mathbf{b} \mathbf{a} \ell$ is called an annihilator ideal if it is of the form $\operatorname{ann}(S)=\{a \in A \mid a s=0$ for all $s \in S\}$ for some $S \subseteq A$.

Theorem

- The set of all annihilator ideals of A ordered by inclusion together with the relation $I \prec J$ iff ann $(I)+J=A$ forms a de Vries algebra.
- This yields a covariant functor Ann : uba $\ell \rightarrow \mathbf{D e V}$.

From KRFrm to ubal

Two ways to go in this direction.

From KRFrm to uba ℓ

Two ways to go in this direction.

- $\mathcal{L}(\mathbb{R})$ frame of opens of \mathbb{R} introduced by Banaschewski.

From KRFrm to uba ℓ

Two ways to go in this direction.

- $\mathcal{L}(\mathbb{R})$ frame of opens of \mathbb{R} introduced by Banaschewski.
- Given $L \in \mathbf{K R F r m}$, the set $\mathcal{C}(L)$ of frame homomorphisms $\mathcal{L}(\mathbb{R}) \rightarrow L$ can be made into a uniformly complete bal-algebra.

From KRFrm to uba ℓ

Two ways to go in this direction.

- $\mathcal{L}(\mathbb{R})$ frame of opens of \mathbb{R} introduced by Banaschewski.
- Given $L \in \operatorname{KRFrm}$, the set $\mathcal{C}(L)$ of frame homomorphisms $\mathcal{L}(\mathbb{R}) \rightarrow L$ can be made into a uniformly complete bal-algebra.
Alternatively,
- Given $L \in \mathbf{K R F r m}$, let $B(L)$ be the free boolean extension of L.

From KRFrm to uba ℓ

Two ways to go in this direction.

- $\mathcal{L}(\mathbb{R})$ frame of opens of \mathbb{R} introduced by Banaschewski.
- Given $L \in \mathbf{K R F r m}$, the set $\mathcal{C}(L)$ of frame homomorphisms $\mathcal{L}(\mathbb{R}) \rightarrow L$ can be made into a uniformly complete bal-algebra.
Alternatively,
- Given $L \in \mathbf{K R F r m}$, let $B(L)$ be the free boolean extension of L.
- Consider the Specker algebra $\mathbb{R}[B(L)]$.

From KRFrm to uba ℓ

Two ways to go in this direction.

- $\mathcal{L}(\mathbb{R})$ frame of opens of \mathbb{R} introduced by Banaschewski.
- Given $L \in \mathbf{K R F r m}$, the set $\mathcal{C}(L)$ of frame homomorphisms $\mathcal{L}(\mathbb{R}) \rightarrow L$ can be made into a uniformly complete bal-algebra.
Alternatively,
- Given $L \in \mathbf{K R F r m}$, let $B(L)$ be the free boolean extension of L.
- Consider the Specker algebra $\mathbb{R}[B(L)]$.
- Take its Dedekind completion $D(\mathbb{R}[B(L)])$.

From KRFrm to ubal

Two ways to go in this direction.

- $\mathcal{L}(\mathbb{R})$ frame of opens of \mathbb{R} introduced by Banaschewski.
- Given $L \in \mathbf{K R F r m}$, the set $\mathcal{C}(L)$ of frame homomorphisms $\mathcal{L}(\mathbb{R}) \rightarrow L$ can be made into a uniformly complete ba ℓ-algebra.
Alternatively,
- Given $L \in \mathbf{K R F r m}$, let $B(L)$ be the free boolean extension of L.
- Consider the Specker algebra $\mathbb{R}[B(L)]$.
- Take its Dedekind completion $D(\mathbb{R}[B(L)])$.
- The well-inside relation \prec on L can be lifted to $D(\mathbb{R}[B(L)])$. The desired $A \in \mathbf{u b a} \ell$ can be obtained as the set of elements of $D(\mathbb{R}[B(L)])$ satisfying $a \prec a$, i.e. its reflexive elements.

From KRFrm to ubal

Two ways to go in this direction.

- $\mathcal{L}(\mathbb{R})$ frame of opens of \mathbb{R} introduced by Banaschewski.
- Given $L \in \operatorname{KRFrm}$, the set $\mathcal{C}(L)$ of frame homomorphisms $\mathcal{L}(\mathbb{R}) \rightarrow L$ can be made into a uniformly complete ba ℓ-algebra.
Alternatively,
- Given $L \in \mathbf{K R F r m}$, let $B(L)$ be the free boolean extension of L.
- Consider the Specker algebra $\mathbb{R}[B(L)]$.
- Take its Dedekind completion $D(\mathbb{R}[B(L)])$.
- The well-inside relation \prec on L can be lifted to $D(\mathbb{R}[B(L)])$. The desired $A \in \mathbf{u b a} \ell$ can be obtained as the set of elements of $D(\mathbb{R}[B(L)])$ satisfying $a \prec a$, i.e. its reflexive elements.

We showed that $D(\mathbb{R}[B(L)])$ is the canonical extension of A.

From DeV to ubal

Also for this direction there are two ways.

From DeV to ubal

Also for this direction there are two ways.

- If $B \in \mathbf{D e V}$, then we can think of it as a boolean frame.

From DeV to uba ℓ

Also for this direction there are two ways.

- If $B \in \mathbf{D e V}$, then we can think of it as a boolean frame. We consider the algebra $\mathcal{C}^{*}(B)$ of the bounded elements of $\mathcal{C}(B)$.

From DeV to ubal

Also for this direction there are two ways.

- If $B \in \mathbf{D e V}$, then we can think of it as a boolean frame. We consider the algebra $\mathcal{C}^{*}(B)$ of the bounded elements of $\mathcal{C}(B)$.
- We lift \prec of B to $\mathcal{C}^{*}(B)$ and we obtain $A \in \mathbf{u b a} \ell$ as the set of its reflexive elements.

From DeV to uba ℓ

Also for this direction there are two ways.

- If $B \in \mathbf{D e V}$, then we can think of it as a boolean frame. We consider the algebra $\mathcal{C}^{*}(B)$ of the bounded elements of $\mathcal{C}(B)$.
- We lift \prec of B to $\mathcal{C}^{*}(B)$ and we obtain $A \in \mathbf{u b a} \ell$ as the set of its reflexive elements.
Alternatively,
- Given $B \in \mathbf{D e V}$, we consider the Specker algebra $\mathbb{R}[B]$.

From DeV to ubal

Also for this direction there are two ways.

- If $B \in \mathbf{D e V}$, then we can think of it as a boolean frame. We consider the algebra $\mathcal{C}^{*}(B)$ of the bounded elements of $\mathcal{C}(B)$.
- We lift \prec of B to $\mathcal{C}^{*}(B)$ and we obtain $A \in \mathbf{u b a} \ell$ as the set of its reflexive elements.
Alternatively,
- Given $B \in \mathbf{D e V}$, we consider the Specker algebra $\mathbb{R}[B]$.
- Take its Dedekind completion $D(\mathbb{R}[B])$.

From DeV to ubal

Also for this direction there are two ways.

- If $B \in \mathbf{D e V}$, then we can think of it as a boolean frame. We consider the algebra $\mathcal{C}^{*}(B)$ of the bounded elements of $\mathcal{C}(B)$.
- We lift \prec of B to $\mathcal{C}^{*}(B)$ and we obtain $A \in \mathbf{u b a} \ell$ as the set of its reflexive elements.
Alternatively,
- Given $B \in \mathbf{D e V}$, we consider the Specker algebra $\mathbb{R}[B]$.
- Take its Dedekind completion $D(\mathbb{R}[B])$.
- We obtain $A \in \mathbf{u b a} \ell$ as the set of reflexive elements of $D(\mathbb{R}[B])$ with respect to the proximity relation obtained by lifting \prec of B.

From DeV to ubal

Also for this direction there are two ways.

- If $B \in \mathbf{D e V}$, then we can think of it as a boolean frame. We consider the algebra $\mathcal{C}^{*}(B)$ of the bounded elements of $\mathcal{C}(B)$.
- We lift \prec of B to $\mathcal{C}^{*}(B)$ and we obtain $A \in \mathbf{u b a} \ell$ as the set of its reflexive elements.
Alternatively,
- Given $B \in \mathbf{D e V}$, we consider the Specker algebra $\mathbb{R}[B]$.
- Take its Dedekind completion $D(\mathbb{R}[B])$.
- We obtain $A \in \mathbf{u b a} \ell$ as the set of reflexive elements of $D(\mathbb{R}[B])$ with respect to the proximity relation obtained by lifting \prec of B.
$(D(\mathbb{R}[B]), \prec)$ is isomorphic to $\left(\mathcal{C}^{*}(B), \prec\right)$.

$D(\mathbb{R}[B(L)])$ is the canonical extension of A.
$D(\mathbb{R}[B])$ is the Dedekind completion of A.

$B(X)$ is the canonical extension of $C(X)$.
$N(X)$ is the Dedekind completion of $C(X)$.

THANK YOU!

DeV-morphisms

Definition

A de Vries homomorphism between de Vries algebras (B, \prec) and (C, \prec) is a map $h: B \rightarrow C$ satisfying

- $h(0)=0$,
- $h(a \wedge b)=h(a) \wedge h(b)$,
- if $a \prec b$, then $\neg h(\neg a) \prec h(b)$,
- $h(a)=\bigvee\{h(b) \mid b \prec a\}$.

We denote by $\mathbf{D e V}$ the category of de Vries algebras and de Vries homomorphisms.

