Connecting dualities for compact Hausdorff spaces

Luca Carai

University of Salerno

joint work with G. Bezhanishvili and P.J. Morandi

New Mexico State University

DOCToR workshop

July 8, 2021

There are several different dualities involving the category **KHaus** of compact Hausdorff spaces and continuous functions. They create bridges between **KHaus** and categories of algebraic and lattice-theoretic structures. We will concentrate on three dualities:

There are several different dualities involving the category **KHaus** of compact Hausdorff spaces and continuous functions. They create bridges between **KHaus** and categories of algebraic and lattice-theoretic structures. We will concentrate on three dualities:

• Gelfand duality (1940s)

There are several different dualities involving the category **KHaus** of compact Hausdorff spaces and continuous functions. They create bridges between **KHaus** and categories of algebraic and lattice-theoretic structures. We will concentrate on three dualities:

- Gelfand duality (1940s)
- De Vries duality (1962)

There are several different dualities involving the category **KHaus** of compact Hausdorff spaces and continuous functions. They create bridges between **KHaus** and categories of algebraic and lattice-theoretic structures. We will concentrate on three dualities:

- Gelfand duality (1940s)
- De Vries duality (1962)
- Isbell duality (1972)

Isbell duality

Isbell duality is obtained by working with the lattice Op(X) of open subsets of $X \in \mathbf{KHaus}$.

Is bell duality is obtained by working with the lattice Op(X) of open subsets of $X \in \mathbf{KHaus}$.

Proposition

Op(X) ordered by inclusion is a frame, i.e. a complete lattice that satisfies the join infinite distributive property

$$V \cap \bigcup_{i \in I} U_i = \bigcup_{i \in I} (V \cap U_i)$$

Is bell duality is obtained by working with the lattice Op(X) of open subsets of $X \in \mathbf{KHaus}$.

Proposition

Op(X) ordered by inclusion is a frame, i.e. a complete lattice that satisfies the join infinite distributive property

$$V \cap \bigcup_{i \in I} U_i = \bigcup_{i \in I} (V \cap U_i)$$

We want to characterize the frames of the form Op(X) for some $X \in \mathbf{KHaus}$.

Since X is compact

if $\bigcup_{i \in I} U_i = X$, then there exist $i_1, \ldots, i_n \in I$ such that $U_{i_1} \cup \cdots \cup U_{i_n} = X$.

Since X is compact

if $\bigcup_{i \in I} U_i = X$, then there exist $i_1, \ldots, i_n \in I$ such that $U_{i_1} \cup \cdots \cup U_{i_n} = X$.

Definition

We can define a relation on Op(X) by

$$U \prec V$$
 iff $cl(U) \subseteq V$

It is called the well-inside relation.

Since X is compact

if $\bigcup_{i \in I} U_i = X$, then there exist $i_1, \ldots, i_n \in I$ such that $U_{i_1} \cup \cdots \cup U_{i_n} = X$.

Definition

We can define a relation on Op(X) by

$$U \prec V$$
 iff $cl(U) \subseteq V$

It is called the well-inside relation. If we denote by $U^* = int(X \setminus U)$ the pseudocomplement of U in Op(X), then $U \prec V$ iff $U^* \cup V = X$.

Since X is compact

if $\bigcup_{i \in I} U_i = X$, then there exist $i_1, \ldots, i_n \in I$ such that $U_{i_1} \cup \cdots \cup U_{i_n} = X$.

Definition

We can define a relation on Op(X) by

$$U \prec V$$
 iff $cl(U) \subseteq V$

It is called the well-inside relation. If we denote by $U^* = int(X \setminus U)$ the pseudocomplement of U in Op(X), then $U \prec V$ iff $U^* \cup V = X$.

If $X \in \mathbf{KHaus}$, then it is regular. So each open subset V can be written as the union of all the opens that are well-inside V, i.e.

$$V = \bigcup \{ U \in \mathsf{Op}(X) \mid U \prec V \}$$

Definition

Let L be a frame.

 We say L is compact if for any S ⊆ L, that ∨ S = 1_L implies that there is a finite subset S' ⊆ S such that ∨ S' = 1_L.

Definition

Let L be a frame.

- We say L is compact if for any S ⊆ L, that ∨ S = 1_L implies that there is a finite subset S' ⊆ S such that ∨ S' = 1_L.
- We say *L* is regular if for any $b \in L$, we have $b = \bigvee \{a \in L \mid a \prec b\}$ where $a \prec b$ iff $a^* \lor b = 1$.

Definition

Let L be a frame.

- We say L is compact if for any S ⊆ L, that ∨ S = 1_L implies that there is a finite subset S' ⊆ S such that ∨ S' = 1_L.
- We say L is regular if for any b ∈ L, we have b = \({a ∈ L | a ≺ b}) where a ≺ b iff a* ∨ b = 1.
- Let **KRFrm** be the category of compact regular frames and frame homomorphisms.

Definition

Let L be a frame.

- We say L is compact if for any S ⊆ L, that ∨ S = 1_L implies that there is a finite subset S' ⊆ S such that ∨ S' = 1_L.
- We say L is regular if for any b ∈ L, we have b = \({a ∈ L | a ≺ b}) where a ≺ b iff a* ∨ b = 1.
- Let **KRFrm** be the category of compact regular frames and frame homomorphisms.

If $f : X \to Y$ is a continuous map, then $f^{-1} : Op(Y) \to Op(X)$ is a frame homomorphism. Thus

Definition

Let L be a frame.

- We say L is compact if for any S ⊆ L, that ∨ S = 1_L implies that there is a finite subset S' ⊆ S such that ∨ S' = 1_L.
- We say L is regular if for any b ∈ L, we have b = \({a ∈ L | a ≺ b}) where a ≺ b iff a* ∨ b = 1.
- Let **KRFrm** be the category of compact regular frames and frame homomorphisms.

If $f : X \to Y$ is a continuous map, then $f^{-1} : Op(Y) \to Op(X)$ is a frame homomorphism. Thus

Proposition

 $Op: KHaus \rightarrow KRFrm$ is a contravariant functor.

How to recover the points of X from Op(X)?

How to recover the points of X from Op(X)?

Let $x \in X$, we can consider the set $p_x = \{U \in Op(X) \mid x \in U\} \subseteq Op(X)$ of the open subsets containing x.

How to recover the points of X from Op(X)?

Let $x \in X$, we can consider the set $p_x = \{U \in Op(X) \mid x \in U\} \subseteq Op(X)$ of the open subsets containing x.

• p_X is a proper filter of Op(X),

How to recover the points of X from Op(X)?

Let $x \in X$, we can consider the set $p_x = \{U \in Op(X) \mid x \in U\} \subseteq Op(X)$ of the open subsets containing x.

- p_X is a proper filter of Op(X),
- *p_x* is a completely prime filter, i.e. *x* ∈ ⋃_{*i*∈*I*} *U_i* implies *x* ∈ *U_j* for some *j* ∈ *I*.

How to recover the points of X from Op(X)?

Let $x \in X$, we can consider the set $p_x = \{U \in Op(X) \mid x \in U\} \subseteq Op(X)$ of the open subsets containing x.

- p_X is a proper filter of Op(X),
- *p_x* is a completely prime filter, i.e. *x* ∈ ⋃_{*i*∈*I*} *U_i* implies *x* ∈ *U_j* for some *j* ∈ *I*.

Definition

Let L be a frame. The completely prime filters of L are called the points of L. The set of points of L is denoted by pt(L).

How to recover the points of X from Op(X)?

Let $x \in X$, we can consider the set $p_x = \{U \in Op(X) \mid x \in U\} \subseteq Op(X)$ of the open subsets containing x.

- p_X is a proper filter of Op(X),
- *p_x* is a completely prime filter, i.e. *x* ∈ ⋃_{*i*∈*I*} *U_i* implies *x* ∈ *U_j* for some *j* ∈ *I*.

Definition

Let L be a frame. The completely prime filters of L are called the points of L. The set of points of L is denoted by pt(L).

Points of *L* can be equivalently defined as frame homomorphisms $L \rightarrow 2$ or as meet-prime elements of *L*.

pt(L)

Definition

Let L be a frame. We can define a topology on pt(L) whose opens are

```
\{p \in \mathsf{pt}(L) \mid a \in p\}
```

where a ranges over all the elements of L.

pt(L)

Definition

Let L be a frame. We can define a topology on pt(L) whose opens are

```
\{p \in \mathsf{pt}(L) \mid a \in p\}
```

where *a* ranges over all the elements of *L*.

Proposition

If $L \in \mathbf{KRFrm}$, then $pt(L) \in \mathbf{KHaus}$.

pt(L)

Definition

Let L be a frame. We can define a topology on pt(L) whose opens are

```
\{p \in \mathsf{pt}(L) \mid a \in p\}
```

where a ranges over all the elements of L.

Proposition

If $L \in \mathbf{KRFrm}$, then $pt(L) \in \mathbf{KHaus}$.

If $\alpha : L \to M$ is a frame homomorphism, the inverse image function $\alpha^{-1} : pt(M) \to pt(L)$ is a continuous function.

Proposition

 $\mathsf{pt}: \mathsf{KRFrm} \to \mathsf{KHaus} \text{ is a contravariant functor.}$

Theorem (Isbell 1972)

The contravariant functors Op and pt give rise to a dual equivalence between **KHaus** and **KRFrm**.

De Vries duality

De Vries duality is obtained by working with the regular open subsets.

De Vries duality

De Vries duality is obtained by working with the regular open subsets.

Definition

An open subset U of a topological space X is called regular open if int(cl(U)) = U. We denote the set of all regular opens by RO(X).

De Vries duality

De Vries duality is obtained by working with the regular open subsets.

Definition

An open subset U of a topological space X is called regular open if int(cl(U)) = U. We denote the set of all regular opens by RO(X).

Proposition (Tarski)

RO(X) ordered by inclusion is a complete boolean algebra where

$$\bigvee S = int \left(cl \left(\bigcup S \right) \right)$$

 $\neg U = \operatorname{int}(X \setminus U)$

Well-inside relation on RO(X)

Let $X \in \mathbf{KHaus}$. The complete boolean algebra structure on RO(X) is not enough to recover the space X.

Well-inside relation on RO(X)

Let $X \in \mathbf{KHaus}$. The complete boolean algebra structure on RO(X) is not enough to recover the space X.

We also need to consider the well-inside relation restricted to RO(X). That is, $U \prec V$ iff $cl(U) \subseteq V$.

Well-inside relation on RO(X)

Let $X \in \mathbf{KHaus}$. The complete boolean algebra structure on RO(X) is not enough to recover the space X.

We also need to consider the well-inside relation restricted to RO(X). That is, $U \prec V$ iff $cl(U) \subseteq V$.

Proposition

• $\emptyset \prec \emptyset$,

•
$$U \prec V \Rightarrow U \subseteq V$$
,

•
$$U \subseteq V \prec W \subseteq O \Rightarrow U \prec O$$
,

•
$$U \prec V, \ U \prec W \Rightarrow U \prec V \cap W,$$

•
$$U \prec V \Rightarrow \neg V \prec \neg U$$

- $U \prec V \Rightarrow \exists W \in RO(X)$ such that $U \prec W \prec V$,
- $V \neq \emptyset \Rightarrow \exists W \in \mathsf{RO}(X) \setminus \{\emptyset\}$ such that $W \prec V$.

De Vries algebras

Definition

A de Vries algebra is a complete boolean algebra B together with a relation \prec such that

• $0 \prec 0$, • $a \prec b \Rightarrow a \leq b$, • $a \leq b \prec c \leq d \Rightarrow a \prec d$, • $a \leq b, a \prec c \Rightarrow a \prec b \land c$, • $a \prec b \Rightarrow \neg b \prec \neg a$, • $a \prec b \Rightarrow \exists c \in B \text{ such that } a \prec c \prec b$, • $b \neq 0 \Rightarrow \exists c \in B \setminus \{0\} \text{ such that } c \prec b$.
To get a regular open, we need to take its regularization $int(cl(f^{-1}(U)))$.

To get a regular open, we need to take its regularization $int(cl(f^{-1}(U)))$.

Consequently, the morphisms in the category **DeV** of de Vries algebras do not necessarily preserve all the boolean operations. Moreover, the composition in **DeV** is not the usual composition of functions.

To get a regular open, we need to take its regularization $int(cl(f^{-1}(U)))$.

Consequently, the morphisms in the category **DeV** of de Vries algebras do not necessarily preserve all the boolean operations. Moreover, the composition in **DeV** is not the usual composition of functions.

Proposition

 $RO: KHaus \rightarrow DeV$ is a contravariant functor.

Points as maximal round filters

How to recover the points of X from RO(X)?

Let $x \in X$, we can consider the set $E_x = \{U \in RO(X) \mid x \in U\} \subseteq RO(X)$ of regular opens containing x.

Let $x \in X$, we can consider the set $E_x = \{U \in RO(X) \mid x \in U\} \subseteq RO(X)$ of regular opens containing x.

• E_x is a proper filter of RO(X),

Let $x \in X$, we can consider the set $E_x = \{U \in RO(X) \mid x \in U\} \subseteq RO(X)$ of regular opens containing x.

- E_x is a proper filter of RO(X),
- E_x is a round filter, i.e. if $U \in E_x$, then there is $V \prec U$ such that $V \in E_x$.

Let $x \in X$, we can consider the set $E_x = \{U \in RO(X) \mid x \in U\} \subseteq RO(X)$ of regular opens containing x.

- E_x is a proper filter of RO(X),
- E_x is a round filter, i.e. if $U \in E_x$, then there is $V \prec U$ such that $V \in E_x$.

Proposition

For each $x \in X$, the set E_x is maximal among proper round filters of RO(X).

Ends

Definition

A maximal round filter of a de Vries algebra B is called an end. We denote the set of all ends of B by End(B).

Ends

Definition

A maximal round filter of a de Vries algebra B is called an end. We denote the set of all ends of B by End(B). We can define on End(B) the topology generated by the subsets of the form

 ${E \in End(B) \mid a \in E}$

for $a \in B$.

Ends

Definition

A maximal round filter of a de Vries algebra B is called an end. We denote the set of all ends of B by End(B). We can define on End(B) the topology generated by the subsets of the form

 $\{E \in \mathsf{End}(B) \mid a \in E\}$

for $a \in B$.

Theorem (De Vries 1962)

- If B is a de Vries algebra, then $End(B) \in KHaus$.
- The contravariant functors RO and End give rise to a dual equivalence between **KHaus** and **DeV**.

In Gelfand duality (or Gelfand-Naimark-Stone duality), instead of using the opens or regular opens, we work with continuous functions.

- In Gelfand duality (or Gelfand-Naimark-Stone duality), instead of using the opens or regular opens, we work with continuous functions.
- Gelfand and Naimark worked with continuous complex-valued functions while Stone worked with real-valued ones. The two approaches are equivalent.

- In Gelfand duality (or Gelfand-Naimark-Stone duality), instead of using the opens or regular opens, we work with continuous functions.
- Gelfand and Naimark worked with continuous complex-valued functions while Stone worked with real-valued ones. The two approaches are equivalent.
- Similar approaches were developed by the Krein brothers, Kakutani, Yosida, Henriksen and Johnson.

Definition

Let X be a compact Hausdorff space. We denote by C(X) the set of continuous real-valued functions on X.

Definition

Let X be a compact Hausdorff space. We denote by C(X) the set of continuous real-valued functions on X.

With the partial order $f \le g$ iff $f(x) \le g(x)$ for each $x \in X$ and pointwise addition, multiplication, and scalar multiplication:

• C(X) is a lattice,

Definition

Let X be a compact Hausdorff space. We denote by C(X) the set of continuous real-valued functions on X.

- C(X) is a lattice,
- $f \leq g$ implies $f + h \leq g + h$ for each $h \in C(X)$ (ℓ -group),

Definition

Let X be a compact Hausdorff space. We denote by C(X) the set of continuous real-valued functions on X.

- C(X) is a lattice,
- $f \leq g$ implies $f + h \leq g + h$ for each $h \in C(X)$ (ℓ -group),
- $0 \le f, g$ implies $0 \le fg$ (ℓ -ring),

Definition

Let X be a compact Hausdorff space. We denote by C(X) the set of continuous real-valued functions on X.

- C(X) is a lattice,
- $f \leq g$ implies $f + h \leq g + h$ for each $h \in C(X)$ (ℓ -group),
- $0 \le f, g$ implies $0 \le fg$ (ℓ -ring),
- C(X) is an \mathbb{R} -algebra,

Definition

Let X be a compact Hausdorff space. We denote by C(X) the set of continuous real-valued functions on X.

- C(X) is a lattice,
- $f \leq g$ implies $f + h \leq g + h$ for each $h \in C(X)$ (ℓ -group),
- $0 \le f, g$ implies $0 \le fg$ (ℓ -ring),
- C(X) is an \mathbb{R} -algebra,
- $0 \le f$ and $0 \le \lambda \in \mathbb{R}$ imply $0 \le \lambda \cdot f$ (*l*-algebra).

Definition

Let X be a compact Hausdorff space. We denote by C(X) the set of continuous real-valued functions on X.

- C(X) is a lattice,
- $f \leq g$ implies $f + h \leq g + h$ for each $h \in C(X)$ (ℓ -group),
- $0 \le f, g$ implies $0 \le fg$ (ℓ -ring),
- C(X) is an \mathbb{R} -algebra,
- $0 \le f$ and $0 \le \lambda \in \mathbb{R}$ imply $0 \le \lambda \cdot f$ (*l*-algebra).
- for each f ∈ C(X) there is n ∈ N such that f ≤ n · 1 (that is, the constant function 1 is a strong order unit, we say C(X) is bounded).

Definition

Let X be a compact Hausdorff space. We denote by C(X) the set of continuous real-valued functions on X.

- C(X) is a lattice,
- $f \leq g$ implies $f + h \leq g + h$ for each $h \in C(X)$ (ℓ -group),
- $0 \le f, g$ implies $0 \le fg$ (ℓ -ring),
- C(X) is an \mathbb{R} -algebra,
- $0 \le f$ and $0 \le \lambda \in \mathbb{R}$ imply $0 \le \lambda \cdot f$ (ℓ -algebra).
- for each $f \in C(X)$ there is $n \in \mathbb{N}$ such that $f \leq n \cdot 1$ (that is, the constant function 1 is a strong order unit, we say C(X) is bounded).
- for each $f \in C(X)$, if $f \leq 1/n$ for each $n \in \mathbb{N}$, then $f \leq 0$ (we say C(X) is archimedean).

Therefore, C(X) is a bounded archimedean ℓ -algebra for every $X \in \mathbf{KHaus}$.

Therefore, C(X) is a bounded archimedean ℓ -algebra for every $X \in \mathbf{KHaus}$.

Definition

Let $ba\ell$ be the category of bounded archimedean ℓ -algebras and unital ℓ -algebra homomorphisms.

Therefore, C(X) is a bounded archimedean ℓ -algebra for every $X \in \mathbf{KHaus}$.

Definition

Let $ba\ell$ be the category of bounded archimedean ℓ -algebras and unital ℓ -algebra homomorphisms.

Let $h: X \to Y$ be a continuous function between compact Hausdorff spaces. The map $C(h): C(Y) \to C(X)$ associating to $f \in C(Y)$ the function $f \circ h \in C(X)$ is a **ba** ℓ -morphism.

Therefore, C(X) is a bounded archimedean ℓ -algebra for every $X \in \mathbf{KHaus}$.

Definition

Let $ba\ell$ be the category of bounded archimedean $\ell\text{-algebras}$ and unital $\ell\text{-algebra}$ homomorphisms.

Let $h: X \to Y$ be a continuous function between compact Hausdorff spaces. The map $C(h): C(Y) \to C(X)$ associating to $f \in C(Y)$ the function $f \circ h \in C(X)$ is a **ba** ℓ -morphism.

Proposition

 $C: \mathbf{KHaus} \rightarrow \mathbf{ba}\ell$ is a contravariant functor.

Therefore, C(X) is a bounded archimedean ℓ -algebra for every $X \in \mathbf{KHaus}$.

Definition

Let $ba\ell$ be the category of bounded archimedean $\ell\text{-algebras}$ and unital $\ell\text{-algebra}$ homomorphisms.

Let $h: X \to Y$ be a continuous function between compact Hausdorff spaces. The map $C(h): C(Y) \to C(X)$ associating to $f \in C(Y)$ the function $f \circ h \in C(X)$ is a **ba** ℓ -morphism.

Proposition

 $C: KHaus \rightarrow ba\ell$ is a contravariant functor.

We want to characterize the $A \in \mathbf{ba}\ell$ of the form C(X) for some $X \in \mathbf{KHaus}$.

Definition

• We can define a norm on each $A \in \mathbf{ba}\ell$ by

$$\|a\| = \inf\{\lambda \in \mathbb{R} \mid |a| \le \lambda \cdot 1\}.$$

Definition

• We can define a norm on each $A \in \mathbf{ba}\ell$ by

$$\|a\| = \inf\{\lambda \in \mathbb{R} \mid |a| \le \lambda \cdot 1\}.$$

 We say that A ∈ baℓ is uniformly complete if it is complete with respect to ||·||.

Definition

• We can define a norm on each $A \in \mathbf{ba}\ell$ by

$$\|a\| = \inf\{\lambda \in \mathbb{R} \mid |a| \le \lambda \cdot 1\}.$$

- We say that A ∈ baℓ is uniformly complete if it is complete with respect to ||·||.
- The full subcategory of **ba***l* given by its uniformly complete objects is denoted by **uba***l*.

Definition

• We can define a norm on each $A \in \mathbf{ba}\ell$ by

```
\|a\| = \inf\{\lambda \in \mathbb{R} \mid |a| \le \lambda \cdot 1\}.
```

- We say that A ∈ baℓ is uniformly complete if it is complete with respect to ||·||.
- The full subcategory of **ba***l* given by its uniformly complete objects is denoted by **uba***l*.

This norm on C(X) corresponds to the sup norm

 $||f|| = \sup\{|f(x)| \mid x \in X\}.$

Definition

• We can define a norm on each $A \in \mathbf{ba}\ell$ by

```
\|a\| = \inf\{\lambda \in \mathbb{R} \mid |a| \le \lambda \cdot 1\}.
```

- We say that A ∈ baℓ is uniformly complete if it is complete with respect to ||·||.
- The full subcategory of **ba***l* given by its uniformly complete objects is denoted by **uba***l*.

This norm on C(X) corresponds to the sup norm

 $||f|| = \sup\{|f(x)| \mid x \in X\}.$

Proposition

 $C(X) \in uba\ell$ for each $X \in KHaus$.

Points as maximal ℓ -ideals

How to recover the points of X from C(X)?
Let $X \in \mathbf{K}$ Haus and $x \in X$ and let $M_x = \{f \in C(X) \mid f(x) = 0\} \subseteq C(X)$.

Let $X \in \mathbf{KHaus}$ and $x \in X$ and let $M_x = \{f \in C(X) \mid f(x) = 0\} \subseteq C(X)$.

• M_{x} is a ring-theoretic ideal,

Let $X \in \mathbf{K}$ Haus and $x \in X$ and let $M_x = \{f \in C(X) \mid f(x) = 0\} \subseteq C(X)$.

- M_x is a ring-theoretic ideal,
- if $g \in M_x$ and $|f| \leq |g|$, then $f \in M_x$.

Let $X \in \mathbf{KHaus}$ and $x \in X$ and let $M_x = \{f \in C(X) \mid f(x) = 0\} \subseteq C(X)$.

- M_{x} is a ring-theoretic ideal,
- if $g \in M_x$ and $|f| \leq |g|$, then $f \in M_x$.

A subset of $A \in \mathbf{ba}\ell$ having these two properties is called an ℓ -ideal.

Let $X \in \mathbf{K}$ Haus and $x \in X$ and let $M_x = \{f \in C(X) \mid f(x) = 0\} \subseteq C(X)$.

- M_{x} is a ring-theoretic ideal,
- if $g \in M_x$ and $|f| \le |g|$, then $f \in M_x$.

A subset of $A \in \mathbf{ba}\ell$ having these two properties is called an ℓ -ideal.

Proposition

For each $x \in X$ the set M_x is maximal among the proper ℓ -ideals of C(X).

Definition

Let $A \in \mathbf{ba}\ell$.

Definition

Let $A \in \mathbf{ba}\ell$.

• A proper *l*-ideal maximal wrt subset inclusion is called a maximal *l*-ideal.

The set of maximal ℓ -ideals of A is denoted by Y_A .

Definition

Let $A \in \mathbf{ba}\ell$.

• A proper *l*-ideal maximal wrt subset inclusion is called a maximal *l*-ideal.

The set of maximal ℓ -ideals of A is denoted by Y_A .

• Y_A can be endowed with a topology whose closed subsets are $Z_{\ell}(I) := \{x \in Y_A \mid I \subseteq x\}$ for each ℓ -ideal I.

Definition

Let $A \in \mathbf{ba}\ell$.

• A proper *l*-ideal maximal wrt subset inclusion is called a maximal *l*-ideal.

The set of maximal ℓ -ideals of A is denoted by Y_A .

Y_A can be endowed with a topology whose closed subsets are Z_ℓ(I) := {x ∈ Y_A | I ⊆ x} for each ℓ-ideal I.
Y_A is called the Yosida space of A and Y_A ∈ KHaus.

Definition

Let $A \in \mathbf{ba}\ell$.

• A proper *l*-ideal maximal wrt subset inclusion is called a maximal *l*-ideal.

The set of maximal ℓ -ideals of A is denoted by Y_A .

- Y_A can be endowed with a topology whose closed subsets are $Z_{\ell}(I) := \{x \in Y_A \mid I \subseteq x\}$ for each ℓ -ideal I. Y_A is called the Yosida space of A and $Y_A \in K$ Haus.
- Let $\alpha : A \to B$ be a unital ℓ -algebra homomorphism. The inverse image $\alpha^{-1} : Y_B \to Y_A$ is a well-defined continuous function.

Definition

Let $A \in \mathbf{ba}\ell$.

• A proper *l*-ideal maximal wrt subset inclusion is called a maximal *l*-ideal.

The set of maximal ℓ -ideals of A is denoted by Y_A .

- Y_A can be endowed with a topology whose closed subsets are $Z_{\ell}(I) := \{x \in Y_A \mid I \subseteq x\}$ for each ℓ -ideal I. Y_A is called the Yosida space of A and $Y_A \in K$ Haus.
- Let $\alpha : A \to B$ be a unital ℓ -algebra homomorphism. The inverse image $\alpha^{-1} : Y_B \to Y_A$ is a well-defined continuous function.

This defines a contravariant functor $Y : \mathbf{ba}\ell \to \mathbf{KHaus}$.

Adjunction and duality

Theorem

There is a dual adjunction between $ba\ell$ and KHaus

 $ba\ell \xrightarrow{C} KHaus$

Adjunction and duality

Theorem

There is a dual adjunction between $ba\ell$ and KHaus This adjunction restricts to a dual equivalence between $uba\ell$ and KHaus.

Adjunction and duality

Theorem

There is a dual adjunction between **ba***l* and **KHaus** This adjunction restricts to a dual equivalence between **uba***l* and **KHaus**.

uba ℓ is a reflective subcategory of **ba** ℓ and CY : **ba** $\ell \rightarrow$ **uba** ℓ is a reflector.

Two classic results play a key role in obtaining these results:

Two classic results play a key role in obtaining these results:

Hölder's theorem is used to show that if $M \in Y_A$, then $A/M \cong \mathbb{R}$.

Two classic results play a key role in obtaining these results:

Hölder's theorem is used to show that if $M \in Y_A$, then $A/M \cong \mathbb{R}$.

Stone-Weierstrass theorem is used to show that each $A \in \mathbf{ba}\ell$ embeds into $C(Y_A)$ as a uniformly dense subalgebra.

It is a consequence of Isbell, de Vries, and Gelfand dualities that $uba\ell$, KRFrm, and DeV are equivalent categories.

It is a consequence of Isbell, de Vries, and Gelfand dualities that $uba\ell$, KRFrm, and DeV are equivalent categories.

Our goal is to connect these dualities by establishing equivalences between $uba\ell$, KRFrm, and DeV using point-free and choice-free methods.

How to isolate the regular opens in Op(X)?

How to isolate the regular opens in Op(X)?

If U^* is the pseudocomplement of U in Op(X), then

$$U^* = \operatorname{int}(X \setminus U)$$
 and $U^{**} = \operatorname{int}(\operatorname{cl}(U))$

How to isolate the regular opens in Op(X)?

If U^* is the pseudocomplement of U in Op(X), then

$$U^* = \operatorname{int}(X \setminus U)$$
 and $U^{**} = \operatorname{int}(\operatorname{cl}(U))$

Definition

If $L \in \mathbf{KRFrm}$, an element $a \in L$ is regular if $a^{**} = a$. The set $\mathfrak{B}(L)$ of regular elements of L is called the booleanization of L.

How to isolate the regular opens in Op(X)?

If U^* is the pseudocomplement of U in Op(X), then

$$U^* = \operatorname{int}(X \setminus U)$$
 and $U^{**} = \operatorname{int}(\operatorname{cl}(U))$

Definition

If $L \in \mathbf{KRFrm}$, an element $a \in L$ is regular if $a^{**} = a$. The set $\mathfrak{B}(L)$ of regular elements of L is called the booleanization of L.

Proposition

• $(\mathfrak{B}(L), \prec)$ is a de Vries algebra.

How to isolate the regular opens in Op(X)?

If U^* is the pseudocomplement of U in Op(X), then

$$U^* = \operatorname{int}(X \setminus U)$$
 and $U^{**} = \operatorname{int}(\operatorname{cl}(U))$

Definition

If $L \in \mathbf{KRFrm}$, an element $a \in L$ is regular if $a^{**} = a$. The set $\mathfrak{B}(L)$ of regular elements of L is called the booleanization of L.

Proposition

- $(\mathfrak{B}(L),\prec)$ is a de Vries algebra.
- B gives rise to a covariant functor from KRFrm to DeV.

How to recover open subsets of $X \in \mathbf{KHaus}$ from $\mathrm{RO}(X)$?

• Each open of X is the union of all the regular opens that are well-inside it.

- Each open of X is the union of all the regular opens that are well-inside it.
- We associate to each open the set of all regular opens that are well-inside it.

- Each open of X is the union of all the regular opens that are well-inside it.
- We associate to each open the set of all regular opens that are well-inside it.
- Such sets of regular opens are exactly the round ideals of RO(X).

- Each open of X is the union of all the regular opens that are well-inside it.
- We associate to each open the set of all regular opens that are well-inside it.
- Such sets of regular opens are exactly the round ideals of RO(X).
- If B ∈ DeV, we denote by ℜ(B) the frame of round ideals of B ordered by inclusion.

How to recover open subsets of $X \in \mathbf{KHaus}$ from $\mathrm{RO}(X)$?

- Each open of X is the union of all the regular opens that are well-inside it.
- We associate to each open the set of all regular opens that are well-inside it.
- Such sets of regular opens are exactly the round ideals of RO(X).
- If B ∈ DeV, we denote by ℜ(B) the frame of round ideals of B ordered by inclusion.

Proposition

 \mathfrak{R} gives rise to a covariant functor from **DeV** to **KRFrm**.

How to recover open subsets of $X \in \mathbf{KHaus}$ from $\mathrm{RO}(X)$?

- Each open of X is the union of all the regular opens that are well-inside it.
- We associate to each open the set of all regular opens that are well-inside it.
- Such sets of regular opens are exactly the round ideals of RO(X).
- If B ∈ DeV, we denote by ℜ(B) the frame of round ideals of B ordered by inclusion.

Proposition

 \mathfrak{R} gives rise to a covariant functor from **DeV** to **KRFrm**.

Theorem

The functors \mathfrak{B} : **KRFrm** \rightarrow **DeV** and \mathfrak{R} : **DeV** \rightarrow **KRFrm** give rise to an equivalence between **KRFrm** and **DeV**.

We want to describe the opens of X in terms of C(X). If U is open of X, then the set of continuous function vanishing on $X \setminus U$ form an archimedean ℓ -ideal of C(X).

We want to describe the opens of X in terms of C(X). If U is open of X, then the set of continuous function vanishing on $X \setminus U$ form an archimedean ℓ -ideal of C(X).

Definition

An ℓ -ideal I of $A \in \mathbf{ba}\ell$ is called archimedean if $A/I \in \mathbf{ba}\ell$.

We want to describe the opens of X in terms of C(X). If U is open of X, then the set of continuous function vanishing on $X \setminus U$ form an archimedean ℓ -ideal of C(X).

Definition

An ℓ -ideal I of $A \in \mathbf{ba}\ell$ is called archimedean if $A/I \in \mathbf{ba}\ell$.

Archimedean ℓ -ideals have been studied by Banaschewski as the ones closed in the norm topology. They are exactly the ℓ -ideals that can be obtained as intersections of maximal ℓ -ideals.

We want to describe the opens of X in terms of C(X). If U is open of X, then the set of continuous function vanishing on $X \setminus U$ form an archimedean ℓ -ideal of C(X).

Definition

An ℓ -ideal I of $A \in \mathbf{ba}\ell$ is called archimedean if $A/I \in \mathbf{ba}\ell$.

Archimedean ℓ -ideals have been studied by Banaschewski as the ones closed in the norm topology. They are exactly the ℓ -ideals that can be obtained as intersections of maximal ℓ -ideals.

Theorem

- The set Arch(A) of all archimedean ℓ-ideals of A ordered by inclusion forms a compact regular frame.
- This yields a covariant functor Arch : $uba\ell \rightarrow KRFrm$.

From $uba\ell$ to DeV

To characterize the regular opens of X in terms of C(X) it is sufficient to describe the regular elements of Arch(A). It turns out that they are exactly the annihilator ideals.

From $uba\ell$ to DeV

To characterize the regular opens of X in terms of C(X) it is sufficient to describe the regular elements of Arch(A). It turns out that they are exactly the annihilator ideals.

Definition

An ℓ -ideal I of $A \in \mathbf{ba}\ell$ is called an annihilator ideal if it is of the form $\operatorname{ann}(S) = \{a \in A \mid as = 0 \text{ for all } s \in S\}$ for some $S \subseteq A$.

To characterize the regular opens of X in terms of C(X) it is sufficient to describe the regular elements of Arch(A). It turns out that they are exactly the annihilator ideals.

Definition

An ℓ -ideal I of $A \in \mathbf{ba}\ell$ is called an annihilator ideal if it is of the form $\operatorname{ann}(S) = \{a \in A \mid as = 0 \text{ for all } s \in S\}$ for some $S \subseteq A$.

Theorem

- The set of all annihilator ideals of A ordered by inclusion together with the relation I ≺ J iff ann(I) + J = A forms a de Vries algebra.
- This yields a covariant functor Ann : $uba\ell \rightarrow DeV$.

Two ways to go in this direction.

Two ways to go in this direction.

• $\mathcal{L}(\mathbb{R})$ frame of opens of \mathbb{R} introduced by Banaschewski.

Two ways to go in this direction.

- $\mathcal{L}(\mathbb{R})$ frame of opens of \mathbb{R} introduced by Banaschewski.
- Given L ∈ KRFrm, the set C(L) of frame homomorphisms L(ℝ) → L can be made into a uniformly complete baℓ-algebra.

Two ways to go in this direction.

- $\mathcal{L}(\mathbb{R})$ frame of opens of \mathbb{R} introduced by Banaschewski.
- Given L ∈ KRFrm, the set C(L) of frame homomorphisms L(ℝ) → L can be made into a uniformly complete baℓ-algebra.

Alternatively,

• Given $L \in \mathbf{KRFrm}$, let B(L) be the free boolean extension of L.

Two ways to go in this direction.

- $\mathcal{L}(\mathbb{R})$ frame of opens of \mathbb{R} introduced by Banaschewski.
- Given L ∈ KRFrm, the set C(L) of frame homomorphisms L(ℝ) → L can be made into a uniformly complete baℓ-algebra.

- Given $L \in \mathbf{KRFrm}$, let B(L) be the free boolean extension of L.
- Consider the Specker algebra $\mathbb{R}[B(L)]$.

Two ways to go in this direction.

- $\mathcal{L}(\mathbb{R})$ frame of opens of \mathbb{R} introduced by Banaschewski.
- Given L ∈ KRFrm, the set C(L) of frame homomorphisms L(ℝ) → L can be made into a uniformly complete baℓ-algebra.

- Given $L \in \mathbf{KRFrm}$, let B(L) be the free boolean extension of L.
- Consider the Specker algebra $\mathbb{R}[B(L)]$.
- Take its Dedekind completion $D(\mathbb{R}[B(L)])$.

Two ways to go in this direction.

- $\mathcal{L}(\mathbb{R})$ frame of opens of \mathbb{R} introduced by Banaschewski.
- Given L ∈ KRFrm, the set C(L) of frame homomorphisms L(ℝ) → L can be made into a uniformly complete baℓ-algebra.

- Given $L \in \mathbf{KRFrm}$, let B(L) be the free boolean extension of L.
- Consider the Specker algebra $\mathbb{R}[B(L)]$.
- Take its Dedekind completion $D(\mathbb{R}[B(L)])$.
- The well-inside relation ≺ on L can be lifted to D(ℝ[B(L)]). The desired A ∈ ubaℓ can be obtained as the set of elements of D(ℝ[B(L)]) satisfying a ≺ a, i.e. its reflexive elements.

Two ways to go in this direction.

- $\mathcal{L}(\mathbb{R})$ frame of opens of \mathbb{R} introduced by Banaschewski.
- Given L ∈ KRFrm, the set C(L) of frame homomorphisms L(ℝ) → L can be made into a uniformly complete baℓ-algebra.

Alternatively,

- Given $L \in \mathbf{KRFrm}$, let B(L) be the free boolean extension of L.
- Consider the Specker algebra $\mathbb{R}[B(L)]$.
- Take its Dedekind completion $D(\mathbb{R}[B(L)])$.
- The well-inside relation ≺ on L can be lifted to D(ℝ[B(L)]). The desired A ∈ ubaℓ can be obtained as the set of elements of D(ℝ[B(L)]) satisfying a ≺ a, i.e. its reflexive elements.

We showed that $D(\mathbb{R}[B(L)])$ is the canonical extension of A.

Also for this direction there are two ways.

Also for this direction there are two ways.

• If $B \in \mathbf{DeV}$, then we can think of it as a boolean frame.

Also for this direction there are two ways.

 If B ∈ DeV, then we can think of it as a boolean frame. We consider the algebra C*(B) of the bounded elements of C(B).

Also for this direction there are two ways.

- If B ∈ DeV, then we can think of it as a boolean frame. We consider the algebra C^{*}(B) of the bounded elements of C(B).
- We lift ≺ of B to C*(B) and we obtain A ∈ ubaℓ as the set of its reflexive elements.

Also for this direction there are two ways.

- If B ∈ DeV, then we can think of it as a boolean frame. We consider the algebra C^{*}(B) of the bounded elements of C(B).
- We lift ≺ of B to C*(B) and we obtain A ∈ ubaℓ as the set of its reflexive elements.

Alternatively,

• Given $B \in \mathbf{DeV}$, we consider the Specker algebra $\mathbb{R}[B]$.

Also for this direction there are two ways.

- If B ∈ DeV, then we can think of it as a boolean frame. We consider the algebra C^{*}(B) of the bounded elements of C(B).
- We lift ≺ of B to C*(B) and we obtain A ∈ ubaℓ as the set of its reflexive elements.

- Given $B \in \mathbf{DeV}$, we consider the Specker algebra $\mathbb{R}[B]$.
- Take its Dedekind completion $D(\mathbb{R}[B])$.

Also for this direction there are two ways.

- If B ∈ DeV, then we can think of it as a boolean frame. We consider the algebra C*(B) of the bounded elements of C(B).
- We lift ≺ of B to C*(B) and we obtain A ∈ ubaℓ as the set of its reflexive elements.

- Given $B \in \mathbf{DeV}$, we consider the Specker algebra $\mathbb{R}[B]$.
- Take its Dedekind completion $D(\mathbb{R}[B])$.
- We obtain A ∈ ubaℓ as the set of reflexive elements of D(ℝ[B]) with respect to the proximity relation obtained by lifting ≺ of B.

Also for this direction there are two ways.

- If B ∈ DeV, then we can think of it as a boolean frame. We consider the algebra C*(B) of the bounded elements of C(B).
- We lift ≺ of B to C*(B) and we obtain A ∈ ubaℓ as the set of its reflexive elements.

- Given $B \in \mathbf{DeV}$, we consider the Specker algebra $\mathbb{R}[B]$.
- Take its Dedekind completion $D(\mathbb{R}[B])$.
- We obtain A ∈ ubaℓ as the set of reflexive elements of D(ℝ[B]) with respect to the proximity relation obtained by lifting ≺ of B.

```
(D(\mathbb{R}[B]),\prec) is isomorphic to (\mathcal{C}^*(B),\prec).
```


 $D(\mathbb{R}[B(L)])$ is the canonical extension of A. $D(\mathbb{R}[B])$ is the Dedekind completion of A.

B(X) is the canonical extension of C(X).

N(X) is the Dedekind completion of C(X).

THANK YOU!

Definition

A de Vries homomorphism between de Vries algebras (B, \prec) and (C, \prec) is a map $h: B \to C$ satisfying

•
$$h(0) = 0$$
,

- $h(a \wedge b) = h(a) \wedge h(b)$,
- if $a \prec b$, then $\neg h(\neg a) \prec h(b)$,
- $h(a) = \bigvee \{h(b) \mid b \prec a\}.$

We denote by **DeV** the category of de Vries algebras and de Vries homomorphisms.