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 Lukasiewicz logic



Fuzzy logic

Fuzzy Logics are nonclassical logical systems whose semantics
extend the two-valued semantics of classical logic by allowing
formulas to take truth values different from 0 and 1.

These formalisms provide a better representation of those
properties and predicates which are perceived as graded.

 Lukasiewicz logic, introduced by Jan  Lukasiewicz in 1930, allows
formulas to take truth values in the real unit interval [0, 1].

1 / 27



Fuzzy logic

Fuzzy Logics are nonclassical logical systems whose semantics
extend the two-valued semantics of classical logic by allowing
formulas to take truth values different from 0 and 1.

These formalisms provide a better representation of those
properties and predicates which are perceived as graded.

 Lukasiewicz logic, introduced by Jan  Lukasiewicz in 1930, allows
formulas to take truth values in the real unit interval [0, 1].

1 / 27



Fuzzy logic

Fuzzy Logics are nonclassical logical systems whose semantics
extend the two-valued semantics of classical logic by allowing
formulas to take truth values different from 0 and 1.

These formalisms provide a better representation of those
properties and predicates which are perceived as graded.

 Lukasiewicz logic, introduced by Jan  Lukasiewicz in 1930, allows
formulas to take truth values in the real unit interval [0, 1].

1 / 27



 Lukasiewicz logic

The language of  Lukasiewicz logic has the connectives

2 / 27



 Lukasiewicz logic

The language of  Lukasiewicz logic has the connectives

• Falsity 0

2 / 27



 Lukasiewicz logic

The language of  Lukasiewicz logic has the connectives

• Falsity 0
• Truth 1

2 / 27



 Lukasiewicz logic

The language of  Lukasiewicz logic has the connectives

• Falsity 0
• Truth 1
• Weak conjunction ∧

2 / 27



 Lukasiewicz logic

The language of  Lukasiewicz logic has the connectives

• Falsity 0
• Truth 1
• Weak conjunction ∧
• Weak disjunction ∨

2 / 27



 Lukasiewicz logic

The language of  Lukasiewicz logic has the connectives

• Falsity 0
• Truth 1
• Weak conjunction ∧
• Weak disjunction ∨
• Negation ¬

2 / 27



 Lukasiewicz logic

The language of  Lukasiewicz logic has the connectives

• Falsity 0
• Truth 1
• Weak conjunction ∧
• Weak disjunction ∨
• Negation ¬
• Strong conjunction �

2 / 27



 Lukasiewicz logic

The language of  Lukasiewicz logic has the connectives

• Falsity 0
• Truth 1
• Weak conjunction ∧
• Weak disjunction ∨
• Negation ¬
• Strong conjunction �
• Strong disjunction ⊕

2 / 27



 Lukasiewicz logic

The language of  Lukasiewicz logic has the connectives

• Falsity 0
• Truth 1
• Weak conjunction ∧
• Weak disjunction ∨
• Negation ¬
• Strong conjunction �
• Strong disjunction ⊕
• Implication →

2 / 27



 Lukasiewicz logic

The language of  Lukasiewicz logic has the connectives

• Falsity 0 0 := ¬(p → p)
• Truth 1 1 := p → p
• Weak conjunction ∧ ϕ ∧ ψ := ¬((ϕ→ ψ)→ ¬ϕ)
• Weak disjunction ∨ ϕ ∨ ψ := (ϕ→ ψ)→ ψ

• Negation ¬
• Strong conjunction � ϕ� ψ := ¬(ϕ→ ¬ψ)
• Strong disjunction ⊕ ϕ⊕ ψ := ¬ϕ→ ψ

• Implication →

 Lukasiewicz introduced the logic as a logical calculus using → and
¬ as primitive connectives.
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 Lukasiewicz logic

The language of  Lukasiewicz logic has the connectives

• Falsity 0
• Truth 1 1 := ¬0
• Weak conjunction ∧ ϕ ∧ ψ := ¬(¬ϕ⊕ ¬(¬ϕ⊕ ψ))
• Weak disjunction ∨ ϕ ∨ ψ := ¬(¬ϕ⊕ ψ)⊕ ψ
• Negation ¬
• Strong conjunction � ϕ� ψ := ¬(¬ϕ⊕ ¬ψ)
• Strong disjunction ⊕
• Implication → ϕ→ ψ := ¬ϕ⊕ ψ

Another option is to use 0, ¬, and ⊕ as primitive connectives.
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[0, 1]-valued semantics for  Lukasiewicz logic

A valuation is a function v : Form→ [0, 1] such that:

• v(0) = 0 and v(1) = 1
• v(ϕ ∧ ψ) = min{v(ϕ), v(ψ)}
• v(ϕ ∨ ψ) = max{v(ϕ), v(ψ)}
• v(¬ϕ) = 1− v(ϕ)
• v(ϕ⊕ ψ) = min{1, v(ϕ) + v(ψ)}
• v(ϕ� ψ) = max{0, v(ϕ) + v(ψ)− 1}
• v(ϕ→ ψ) = min{1, 1− v(ϕ) + v(ψ)}

Theorem (Completeness)
ϕ is a theorem of  Lukasiewicz logic iff v(ϕ) = 1 for each
valuation v.
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MV-algebras



MV-algebras

Definition (Chang 1958)
An MV-algebra is a structure (A,⊕,¬, 0) satisfying

1. x ⊕ (y ⊕ z) = (x ⊕ y)⊕ z
2. x ⊕ y = y ⊕ z
3. x ⊕ 0 = x
4. ¬¬x = x
5. x ⊕ ¬0 = ¬0
6. ¬(¬x ⊕ y)⊕ y = ¬(¬y ⊕ x)⊕ x

We can define the operations 1, ∧, ∨, �, → in any MV-algebra A.

Since MV-algebras are defined by equations, the class of
MV-algebras form a variety i.e. it is closed under products,
subalgebras, and homomorphic images.
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Algebraic semantics of  Lukasiewicz logic

Formulas of  Lukasiewicz logic correspond to terms in the language
of MV-algebras.

Theorem (Algebraic semantics)
Let ϕ be a formula and t the corresponding term. ϕ is a theorem
of  Lukasiewicz logic iff the equation t = 1 is true in every
MV-algebra.
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The MV-algebra [0, 1]

The unit interval [0, 1] is an MV-algebra with the operations:

• 0 is the real number 0
• ¬x = 1− x
• x ⊕ y = min{1, x + y} truncated sum

As a consequence

• x ∧ y = min{x , y}
• x ∨ y = max{x , y}
• x � y = max{0, x + y − 1}
• x → y = min{1, 1− x + y}
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The MV-algebra [0, 1]

Theorem (Chang completeness theorem)
An equation holds in [0, 1] iff it holds in every MV-algebra.

This is equivalent to saying that [0, 1] generates the variety of
MV-algebras.

We can think of this fact as an algebraic way to state the
completeness of  Lukasiewicz logic with respect to the [0, 1]-valued
semantics.
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Examples of MV-algebras

Boolean algebras
They are exactly the MV-algebras in which ∧ = � (or ∨ = ⊕).
It follows that every theorem of  Lukasiewicz logic (that doesn’t
contain � and ⊕) is a classical tautology.

[0, 1]X
The set of all functions from a set X into [0, 1] with pointwise
operations.

C(X )
The set of all continuous functions from a topological space X into
[0, 1] with pointwise operations.
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Examples of MV-algebras: PWLZ(X )

A continuous function f : [0, 1]κ → [0, 1] is piecewise linear if there
exist g1, . . . , gn polynomials of degree one in the variables (xα)α<κ
such that for each x ∈ [0, 1]κ we have f (x) = gi (x) for some i .

PWLZ([0, 1]κ) is the set of all piecewise linear functions such that
g1, . . . , gn have integer coefficients. These functions are also
known as Z-maps or MacNaughton functions.

If X ⊆ [0, 1]κ, we denote by PWLZ(X ) the set of maps in
PWLZ([0, 1]κ) restricted to X . It is an MV-algebra with pointwise
operations.
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Examples: Chang algebra

ε is an infinitesimal element.
Indeed, nε ≤ 1− ε for every n.
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MV-algebras and `-groups

Definition
An abelian `-group G is an abelian group equipped with a lattice
order such that a ≤ b implies a + c ≤ b + c for all a, b, c ∈ G .

u ∈ G is a strong order-unit if for each x ∈ G there is n ∈ N such
that x ≤ nu.

Proposition
[0, u] := {x ∈ G | 0 ≤ x ≤ u} is an MV-algebra with operations
¬x = u − x and x ⊕ y = u ∧ (x + y).

In fact, every MV-algebra arises in this way.
Theorem (Mundici 1986)
The category of abelian `-groups with strong order-unit is
equivalent to the category of MV-algebras.
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Ideals

Definition
A nonempty subset I of an MV-algebra A is an ideal if
• a ≤ b ∈ I implies a ∈ I,
• a, b ∈ I implies a ⊕ b ∈ I.

If I is an ideal of A, we can define the quotient A/I.

Proper ideals that are maximal wrt the inclusion are called
maximal ideals. We denote by Max(A) the set of maximal ideals
of A.
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Simple and semisimple

Definition
A nontrivial MV-algebra is simple if its only ideals are {0} and A.

An MV-algebra is semisimple iff the intersection of all its
maximal ideals is {0}. Equivalently, A is semisimple iff it does
not have infinitesimal elements.

Proposition
Let I be an ideal of an MV-algebra A. Then
• A/I is simple iff I is maximal.
• A/I is semisimple iff I is intersection of maximal ideals.
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Duality for semisimple MV-algebras



Simple MV-algebras and [0, 1]

Proposition
[0, 1] and all its subalgebras are simple.

In fact, these are all the simple MV-algebras.
Theorem (Chang 1958)
Each simple MV-algebra embeds in a unique way into [0, 1].

What about semisimple MV-algebras?
Proposition
[0, 1]X and all its subalgebras are semisimple.
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Representation of semisimple MV-algebras

Theorem
If A is semisimple, then it embeds into [0, 1]Max(A).

Each M ∈ Max(A) is such that A/M embeds into [0, 1]. Thus, if
a ∈ A, we can define a map Max(A)→ [0, 1] by associating to M
the image of a/M under the embedding A/M ↪→ [0, 1].

Since the intersection of all maximal ideals of A is {0}, this defines
an embedding A ↪→ [0, 1]Max(A).
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Representation of semisimple MV-algebras

How can we describe the image of the embedding of
A ↪→ [0, 1]Max(A) when A is semisimple?

We need to coordinatize Max(A). That is, embed Max(A) into
[0, 1]κ for some cardinal κ (Tychonoff cubes).

Suppose that (gα)α<κ are generators of A. If M ∈ Max(A), we
send M to (rα) where rα is the image of gα/M under the
embedding A/M ↪→ [0, 1].

It turns out that Max(A) embeds into [0, 1]κ as a closed subset.
In particular when A is the free MV-algebra on κ generators (which
is semisimple), Max(A) corresponds to the whole [0, 1]κ.

Theorem
If A is semisimple, then A is isomorphic to PWLZ(Max(A)).
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We need to coordinatize Max(A). That is, embed Max(A) into
[0, 1]κ for some cardinal κ (Tychonoff cubes).

Suppose that (gα)α<κ are generators of A. If M ∈ Max(A), we
send M to (rα) where rα is the image of gα/M under the
embedding A/M ↪→ [0, 1].
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Duality for semisimple MV-algebras

Applying a general duality approach due to Caramello, Marra, and
Spada it is possible to obtain a duality for semisimple MV-algebras.
Theorem (Marra-Spada 2012)
The category of semisimple MV-algebras is dually equivalent to
the category of closed subsets of Tychnoff cubes.

To an MV-algebra A we associate the image of Max(A) ↪→ [0, 1]κ.

Vice versa, to a closed subset C of [0, 1]κ we associate MV-algebra
PWLZ(C).
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Examples

Points in Tychonoff cubes correspond to simple MV-algebras.

Closed subsets of finite dimensional Tychonoff cubes correspond to
finitely generated semisimple MV-algebras

Rational polyhedra in finite dimensional Tychonoff cubes
correspond to finitely presented MV-algebras.

PWLZ(T ) ∼= F(x , y)
〈¬(x ⊕ y), x � x � y〉
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Extending the duality to all
MV-algebras



Prime ideals

Our goal is to extend the duality for semisimple MV-algebras to all
MV-algebras by working with prime ideals instead of maximal
ideals.
Definition
A proper ideal I of an MV-algebra A is prime if x ∧ y ∈ I implies
x ∈ I or y ∈ I. We denote by Spec(A) the set of all prime ideals
of A.

Proposition
Let A be an MV-algebra and I a proper ideal of A. We have that
• I is prime iff A/I is linearly ordered.
• The intersection of all prime ideals of A is {0}.
• A embeds into a product of linearly ordered MV-algebras.
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Di Nola Theorem

We need an MV-algebra in which we can embed the linearly
ordered MV-algebras.
Theorem (Di Nola)
Let γ be an infinite cardinal. Then there exists an ultrapower U
of the MV-algebra [0, 1] such that every linearly ordered
MV-algebra A with |A| ≤ γ embeds into U .

U is a linearly ordered MV-algebra containing [0, 1] and lots of
infinitesimals. Any f ∈ PWLZ([0, 1]κ) can be extended to a
function ∗f : Uκ → U .

Uκ can be endowed with the Zariski topology which is given by a
basis of closed consisting of the sets {x ∈ Uκ | ∗f (x) = 0} where f
ranges in PWLZ([0, 1]κ). This topology is compact but not even
T0.
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Coordinatize Spec(A)

What happens if we try to coordinatize Spec(A) like we did with
Max(A)? For the embedding A/P ↪→ U to exist we need
|A/P| ≤ γ and the embedding is not necessarily unique.

Suppose that (gα)α<κ are generators of A with κ ≤ γ. If
P ∈ Spec(A), we send P to the set of all the (rα) ∈ Uκ for which
there exists an embedding A/P ↪→ U that maps gα/M to rα for all
α.

Each P ∈ Spec(A) is now mapped to a closed subset of Uκ. When
κ is finite this subset looks like an “infinitesimal rational simplex”.

So we can map Spec(A) to the union of all these subsets of Uκ.
This union turns out to be a closed subset of Uκ.
In particular when A is the free MV-algebra on κ generators,
Spec(A) corresponds to the whole Uκ.
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Extending the duality to all MV-algebras

Applying the general duality approach of Caramello, Marra, and
Spada it is possible to obtain also a duality for all MV-algebras.
Theorem (Carai-Lapenta-Spada)
The category of MV-algebras of cardinality at most γ is dually
equivalent to the category of closed subsets of Uκ with κ ≤ γ.

To an MV-algebra A we associate the closed subset of Uκ
corresponding to Spec(A).

Vice versa, to a closed subset C of Uκ we associate the
MV-algebra ∗PWLZ(C) given by the restrictions to C of all the ∗f
with f ∈ PWLZ([0, 1]κ).
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Coordinatization of Spec(A)

We would like to coordinatize Spec(A) (i.e. embed it into Uκ) so
that A ∼= ∗PWLZ(Spec(A)).

We restrict to the case γ = n ∈ N where we can use:
Theorem
If x ∈ Un, then x = x0 + α1v1 + · · ·+ αtvt where α1, . . . , αt ∈ U
are positive infinitesimals such that αi+1/αi is infinitesimal,
x0 ∈ [0, 1]n, and v1, . . . , vt are orthonormal vectors in Rn.

Let x be any of the points of the “infinitesimal simplex” inside Un

associated to P. Suppose x = x0 + α1v1 + · · ·+ αtvt .

Apply a sort of Gram-Schmidt process to (x0, v1, . . . , vt) to obtain
(x0,w1, . . . ,ws).

Fix any infinitesimal ε and then associate to P the point
x0 + εw1 + · · ·+ εsws ∈ Un.
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Example: Chang
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Other dualities



Riesz MV-algebras

Definition
A Riesz MV-algebra is a structure (R, ·) where R is an
MV-algebra and · : [0, 1]× R → R is such that

1. If x � y = 0, then (rx)� (ry) = 0 and r(x ⊕ y) = rx ⊕ ry .
2. If r � q = 0, then (rx)� (qx) = 0 and (r ⊕ q)x = rx ⊕ ry .
3. (rq)x = r(qx).
4. 1x = x .

We proved an analogous duality result in this setting. The main
differences are that the piecewise linear functions can have
non-integer coefficients and hence the Zariski topology on Uκ is
finer.
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Abelian `-groups and Riesz spaces

We also proved an analogous duality for abelian l-groups and Riesz
spaces (real vector lattices). This result generalizes the
Baker-Beynon duality.

Here are the main differences from the MV-algebras and Riesz
MV-algebras case:

• Instead of working with an ultrapower of [0, 1], we have an
ultrapower of R.

• The linear pieces of piecewise linear functions are
homogeneous.

• Infinitesimal simplexes are replaced by infinitesimal cones.
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THANK YOU!
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