Dualities for MV-algebras

Luca Carai, Università degli Studi di Salerno

Università degli Studi di Campania Luigi Vanvitelli, Caserta March 11, 2022

Łukasiewicz logic

Fuzzy logic

Fuzzy Logics are nonclassical logical systems whose semantics extend the two-valued semantics of classical logic by allowing formulas to take truth values different from 0 and 1 .

Fuzzy logic

Fuzzy Logics are nonclassical logical systems whose semantics extend the two-valued semantics of classical logic by allowing formulas to take truth values different from 0 and 1 .

These formalisms provide a better representation of those properties and predicates which are perceived as graded.

Fuzzy logic

Fuzzy Logics are nonclassical logical systems whose semantics extend the two-valued semantics of classical logic by allowing formulas to take truth values different from 0 and 1 .

These formalisms provide a better representation of those properties and predicates which are perceived as graded.

Łukasiewicz logic, introduced by Jan Łukasiewicz in 1930, allows formulas to take truth values in the real unit interval $[0,1]$.

Łukasiewicz logic

Łukasiewicz logic

The language of Łukasiewicz logic has the connectives

- Falsity 0

Łukasiewicz logic

The language of Łukasiewicz logic has the connectives

- Falsity 0
- Truth 1

Łukasiewicz logic

The language of Łukasiewicz logic has the connectives

- Falsity 0
- Truth 1
- Weak conjunction \wedge

Łukasiewicz logic

The language of Łukasiewicz logic has the connectives

- Falsity 0
- Truth 1
- Weak conjunction \wedge
- Weak disjunction \vee

Łukasiewicz logic

The language of Łukasiewicz logic has the connectives

- Falsity 0
- Truth 1
- Weak conjunction \wedge
- Weak disjunction \vee
- Negation $ᄀ$

Łukasiewicz logic

The language of Łukasiewicz logic has the connectives

- Falsity 0
- Truth 1
- Weak conjunction \wedge
- Weak disjunction \vee
- Negation \neg
- Strong conjunction \odot

Łukasiewicz logic

The language of Łukasiewicz logic has the connectives

- Falsity 0
- Truth 1
- Weak conjunction \wedge
- Weak disjunction \vee
- Negation \neg
- Strong conjunction \odot
- Strong disjunction \oplus

Łukasiewicz logic

The language of Łukasiewicz logic has the connectives

- Falsity 0
- Truth 1
- Weak conjunction \wedge
- Weak disjunction \vee
- Negation \neg
- Strong conjunction \odot
- Strong disjunction \oplus
- Implication \rightarrow

Łukasiewicz logic

The language of Łukasiewicz logic has the connectives

- Falsity $0 \quad 0:=\neg(p \rightarrow p)$
- Truth $1 \quad 1:=p \rightarrow p$
- Weak conjunction $\wedge \varphi \wedge \psi:=\neg((\varphi \rightarrow \psi) \rightarrow \neg \varphi)$
- Weak disjunction $\vee \varphi \vee \psi:=(\varphi \rightarrow \psi) \rightarrow \psi$
- Negation $ᄀ$
- Strong conjunction $\odot \varphi \odot \psi:=\neg(\varphi \rightarrow \neg \psi)$
- Strong disjunction $\oplus \quad \varphi \psi:=\neg \varphi \rightarrow \psi$
- Implication \rightarrow

Łukasiewicz introduced the logic as a logical calculus using \rightarrow and \neg as primitive connectives.

Łukasiewicz logic

The language of Łukasiewicz logic has the connectives

- Falsity 0
- Truth $1 \quad 1:=\neg 0$
- Weak conjunction $\wedge \quad \varphi \wedge \psi:=\neg(\neg \varphi \oplus \neg(\neg \varphi \oplus \psi))$
- Weak disjunction $\vee \varphi \vee \psi:=\neg(\neg \varphi \oplus \psi) \oplus \psi$
- Negation $ᄀ$
- Strong conjunction $\odot \quad \varphi \odot \psi:=\neg(\neg \varphi \oplus \neg \psi)$
- Strong disjunction \oplus
- Implication $\rightarrow \quad \varphi \rightarrow \psi:=\neg \varphi \oplus \psi$

Another option is to use $0, \neg$, and \oplus as primitive connectives.

[0,1$]$-valued semantics for Łukasiewicz logic

A valuation is a function $v:$ Form $\rightarrow[0,1]$ such that:

[0,1]-valued semantics for Łukasiewicz logic

A valuation is a function $v:$ Form $\rightarrow[0,1]$ such that:

- $v(0)=0$ and $v(1)=1$

[0,1$]$-valued semantics for Łukasiewicz logic

A valuation is a function $v:$ Form $\rightarrow[0,1]$ such that:

- $v(0)=0$ and $v(1)=1$
- $v(\varphi \wedge \psi)=\min \{v(\varphi), v(\psi)\}$
- $v(\varphi \vee \psi)=\max \{v(\varphi), v(\psi)\}$

[0, 1]-valued semantics for Łukasiewicz logic

A valuation is a function $v:$ Form $\rightarrow[0,1]$ such that:

- $v(0)=0$ and $v(1)=1$
- $v(\varphi \wedge \psi)=\min \{v(\varphi), v(\psi)\}$
- $v(\varphi \vee \psi)=\max \{v(\varphi), v(\psi)\}$
- $v(\neg \varphi)=1-v(\varphi)$

[0,1$]$-valued semantics for Łukasiewicz logic

A valuation is a function $v:$ Form $\rightarrow[0,1]$ such that:

- $v(0)=0$ and $v(1)=1$
- $v(\varphi \wedge \psi)=\min \{v(\varphi), v(\psi)\}$
- $v(\varphi \vee \psi)=\max \{v(\varphi), v(\psi)\}$
- $v(\neg \varphi)=1-v(\varphi)$
- $v(\varphi \oplus \psi)=\min \{1, v(\varphi)+v(\psi)\}$

[0,1$]$-valued semantics for Łukasiewicz logic

A valuation is a function $v:$ Form $\rightarrow[0,1]$ such that:

- $v(0)=0$ and $v(1)=1$
- $v(\varphi \wedge \psi)=\min \{v(\varphi), v(\psi)\}$
- $v(\varphi \vee \psi)=\max \{v(\varphi), v(\psi)\}$
- $v(\neg \varphi)=1-v(\varphi)$
- $v(\varphi \oplus \psi)=\min \{1, v(\varphi)+v(\psi)\}$
- $v(\varphi \odot \psi)=\max \{0, v(\varphi)+v(\psi)-1\}$

[0, 1]-valued semantics for Łukasiewicz logic

A valuation is a function $v:$ Form $\rightarrow[0,1]$ such that:

- $v(0)=0$ and $v(1)=1$
- $v(\varphi \wedge \psi)=\min \{v(\varphi), v(\psi)\}$
- $v(\varphi \vee \psi)=\max \{v(\varphi), v(\psi)\}$
- $v(\neg \varphi)=1-v(\varphi)$
- $v(\varphi \oplus \psi)=\min \{1, v(\varphi)+v(\psi)\}$
- $v(\varphi \odot \psi)=\max \{0, v(\varphi)+v(\psi)-1\}$
- $v(\varphi \rightarrow \psi)=\min \{1,1-v(\varphi)+v(\psi)\}$

[0,1$]$-valued semantics for Łukasiewicz logic

A valuation is a function $v:$ Form $\rightarrow[0,1]$ such that:

- $v(0)=0$ and $v(1)=1$
- $v(\varphi \wedge \psi)=\min \{v(\varphi), v(\psi)\}$
- $v(\varphi \vee \psi)=\max \{v(\varphi), v(\psi)\}$
- $v(\neg \varphi)=1-v(\varphi)$
- $v(\varphi \oplus \psi)=\min \{1, v(\varphi)+v(\psi)\}$
- $v(\varphi \odot \psi)=\max \{0, v(\varphi)+v(\psi)-1\}$
- $v(\varphi \rightarrow \psi)=\min \{1,1-v(\varphi)+v(\psi)\}$

Theorem (Completeness)

φ is a theorem of $Ł u k a s i e w i c z ~ l o g i c ~ i f f ~ v(\varphi)=1$ for each valuation v.

MV-algebras

MV-algebras

Definition (Chang 1958)

An $M V$-algebra is a structure $(A, \oplus, \neg, 0)$ satisfying

1. $x \oplus(y \oplus z)=(x \oplus y) \oplus z$
2. $x \oplus y=y \oplus z$
3. $x \oplus 0=x$
4. $\neg \neg x=x$
5. $x \oplus \neg 0=\neg 0$
6. $\neg(\neg x \oplus y) \oplus y=\neg(\neg y \oplus x) \oplus x$

MV-algebras

Definition (Chang 1958)

An $M V$-algebra is a structure $(A, \oplus, \neg, 0)$ satisfying

1. $x \oplus(y \oplus z)=(x \oplus y) \oplus z$
2. $x \oplus y=y \oplus z$
3. $x \oplus 0=x$
4. $\neg \neg x=x$
5. $x \oplus \neg 0=\neg 0$
6. $\neg(\neg x \oplus y) \oplus y=\neg(\neg y \oplus x) \oplus x$

We can define the operations $1, \wedge, \vee, \odot, \rightarrow$ in any MV-algebra A.

MV-algebras

Definition (Chang 1958)

An $M V$-algebra is a structure $(A, \oplus, \neg, 0)$ satisfying

1. $x \oplus(y \oplus z)=(x \oplus y) \oplus z$
2. $x \oplus y=y \oplus z$
3. $x \oplus 0=x$
4. $\neg \neg x=x$
5. $x \oplus \neg 0=\neg 0$
6. $\neg(\neg x \oplus y) \oplus y=\neg(\neg y \oplus x) \oplus x$

We can define the operations $1, \wedge, \vee, \odot, \rightarrow$ in any MV-algebra A.
Since MV-algebras are defined by equations, the class of MV-algebras form a variety i.e. it is closed under products, subalgebras, and homomorphic images.

Algebraic semantics of $Ł u k a s i e w i c z ~ l o g i c ~$

Formulas of Łukasiewicz logic correspond to terms in the language of MV-algebras.

Algebraic semantics of Łukasiewicz logic

Formulas of Łukasiewicz logic correspond to terms in the language of MV-algebras.

Theorem (Algebraic semantics)

Let φ be a formula and t the corresponding term. φ is a theorem of $Ł u k a s i e w i c z ~ l o g i c ~ i f f ~ t h e ~ e q u a t i o n ~ t=1 ~ i s ~ t r u e ~ i n ~ e v e r y ~$ MV-algebra.

The MV-algebra $[0,1]$

The unit interval $[0,1]$ is an MV-algebra with the operations:

The MV-algebra $[0,1]$

The unit interval $[0,1]$ is an MV-algebra with the operations:

- 0 is the real number 0
- $\neg x=1-x$
- $x \oplus y=\min \{1, x+y\}$ truncated sum

The MV-algebra $[0,1]$

The unit interval $[0,1]$ is an MV-algebra with the operations:

- 0 is the real number 0
- $\neg x=1-x$
- $x \oplus y=\min \{1, x+y\}$ truncated sum

As a consequence

- $x \wedge y=\min \{x, y\}$
- $x \vee y=\max \{x, y\}$
- $x \odot y=\max \{0, x+y-1\}$
- $x \rightarrow y=\min \{1,1-x+y\}$

The MV-algebra $[0,1]$

Theorem (Chang completeness theorem)

An equation holds in $[0,1]$ iff it holds in every $M V$-algebra.

The MV-algebra $[0,1]$

Theorem (Chang completeness theorem)

An equation holds in $[0,1]$ iff it holds in every MV-algebra.
This is equivalent to saying that $[0,1]$ generates the variety of MV-algebras.

The MV-algebra $[0,1]$

Theorem (Chang completeness theorem)

An equation holds in $[0,1]$ iff it holds in every $M V$-algebra.
This is equivalent to saying that $[0,1]$ generates the variety of MV-algebras.

We can think of this fact as an algebraic way to state the completeness of Łukasiewicz logic with respect to the $[0,1]$-valued semantics.

Examples of MV-algebras

Boolean algebras

They are exactly the MV-algebras in which $\wedge=\odot($ or $\vee=\oplus)$. It follows that every theorem of Łukasiewicz logic (that doesn't contain \odot and $\oplus)$ is a classical tautology.

Examples of MV-algebras

Boolean algebras

They are exactly the MV-algebras in which $\wedge=\odot($ or $\vee=\oplus)$. It follows that every theorem of Łukasiewicz logic (that doesn't contain \odot and \oplus) is a classical tautology.
$[0,1]^{X}$
The set of all functions from a set X into $[0,1]$ with pointwise operations.

Examples of MV-algebras

Boolean algebras

They are exactly the MV-algebras in which $\wedge=\odot($ or $\vee=\oplus)$. It follows that every theorem of Łukasiewicz logic (that doesn't contain \odot and \oplus) is a classical tautology.
$[0,1]^{x}$
The set of all functions from a set X into $[0,1]$ with pointwise operations.
$C(X)$
The set of all continuous functions from a topological space X into
$[0,1]$ with pointwise operations.

Examples of MV-algebras: $\mathrm{PWL}_{\mathbb{Z}}(X)$

A continuous function $f:[0,1]^{\kappa} \rightarrow[0,1]$ is piecewise linear if there exist g_{1}, \ldots, g_{n} polynomials of degree one in the variables $\left(x_{\alpha}\right)_{\alpha<\kappa}$ such that for each $x \in[0,1]^{\kappa}$ we have $f(x)=g_{i}(x)$ for some i.

Examples of MV-algebras: $\mathrm{PWL}_{\mathbb{Z}}(X)$

A continuous function $f:[0,1]^{\kappa} \rightarrow[0,1]$ is piecewise linear if there exist g_{1}, \ldots, g_{n} polynomials of degree one in the variables $\left(x_{\alpha}\right)_{\alpha<\kappa}$ such that for each $x \in[0,1]^{\kappa}$ we have $f(x)=g_{i}(x)$ for some i.
$\mathrm{PWL}_{\mathbb{Z}}\left([0,1]^{\kappa}\right)$ is the set of all piecewise linear functions such that g_{1}, \ldots, g_{n} have integer coefficients. These functions are also known as \mathbb{Z}-maps or MacNaughton functions.

Examples of MV-algebras: $\mathrm{PWL}_{\mathbb{Z}}(X)$

A continuous function $f:[0,1]^{\kappa} \rightarrow[0,1]$ is piecewise linear if there exist g_{1}, \ldots, g_{n} polynomials of degree one in the variables $\left(x_{\alpha}\right)_{\alpha<\kappa}$ such that for each $x \in[0,1]^{\kappa}$ we have $f(x)=g_{i}(x)$ for some i.
$\mathrm{PWL}_{\mathbb{Z}}\left([0,1]^{\kappa}\right)$ is the set of all piecewise linear functions such that g_{1}, \ldots, g_{n} have integer coefficients. These functions are also known as \mathbb{Z}-maps or MacNaughton functions.

If $X \subseteq[0,1]^{\kappa}$, we denote by $\mathrm{PWL}_{\mathbb{Z}}(X)$ the set of maps in $\mathrm{PWL}_{\mathbb{Z}}\left([0,1]^{\kappa}\right)$ restricted to X. It is an MV-algebra with pointwise operations.

Examples: Chang algebra

$$
\left\{\begin{array}{l}
1 \\
1-\varepsilon \\
1-2 \varepsilon \\
1-3 \varepsilon \\
1-4 \varepsilon \\
\vdots \\
\vdots \\
4 \varepsilon \\
3 \varepsilon \\
2 \varepsilon \\
\varepsilon
\end{array}\right.
$$

ε is an infinitesimal element.
Indeed, $n \varepsilon \leq 1-\varepsilon$ for every n.

MV-algebras and ℓ-groups

Definition

An abelian ℓ-group G is an abelian group equipped with a lattice order such that $a \leq b$ implies $a+c \leq b+c$ for all $a, b, c \in G$.
$u \in G$ is a strong order-unit if for each $x \in G$ there is $n \in \mathbb{N}$ such that $x \leq n u$.

MV-algebras and ℓ-groups

Definition

An abelian ℓ-group G is an abelian group equipped with a lattice order such that $a \leq b$ implies $a+c \leq b+c$ for all $a, b, c \in G$. $u \in G$ is a strong order-unit if for each $x \in G$ there is $n \in \mathbb{N}$ such that $x \leq n u$.

Proposition

$[0, u]:=\{x \in G \mid 0 \leq x \leq u\}$ is an MV-algebra with operations $\neg x=u-x$ and $x \oplus y=u \wedge(x+y)$.

MV-algebras and ℓ-groups

Definition

An abelian ℓ-group G is an abelian group equipped with a lattice order such that $a \leq b$ implies $a+c \leq b+c$ for all $a, b, c \in G$.
$u \in G$ is a strong order-unit if for each $x \in G$ there is $n \in \mathbb{N}$ such that $x \leq n u$.

Proposition

$[0, u]:=\{x \in G \mid 0 \leq x \leq u\}$ is an MV-algebra with operations $\neg x=u-x$ and $x \oplus y=u \wedge(x+y)$.

In fact, every MV-algebra arises in this way.

Theorem (Mundici 1986)

The category of abelian ℓ-groups with strong order-unit is equivalent to the category of MV-algebras.

Ideals

Definition

A nonempty subset I of an MV-algebra A is an ideal if

- $a \leq b \in I$ implies $a \in I$,
- $a, b \in I$ implies $a \oplus b \in I$.

Ideals

Definition

A nonempty subset I of an MV-algebra A is an ideal if

- $a \leq b \in I$ implies $a \in I$,
- $a, b \in I$ implies $a \oplus b \in I$.

If I is an ideal of A, we can define the quotient A / I.

Ideals

Definition

A nonempty subset I of an MV-algebra A is an ideal if

- $a \leq b \in I$ implies $a \in I$,
- $a, b \in I$ implies $a \oplus b \in I$.

If I is an ideal of A, we can define the quotient A / I.
Proper ideals that are maximal wrt the inclusion are called maximal ideals. We denote by $\operatorname{Max}(A)$ the set of maximal ideals of A.

Simple and semisimple

Definition

A nontrivial MV-algebra is simple if its only ideals are $\{0\}$ and A.

Simple and semisimple

Definition

A nontrivial MV-algebra is simple if its only ideals are $\{0\}$ and A.
An MV-algebra is semisimple iff the intersection of all its maximal ideals is $\{0\}$. Equivalently, A is semisimple iff it does not have infinitesimal elements.

Simple and semisimple

Definition

A nontrivial MV-algebra is simple if its only ideals are $\{0\}$ and A.
An MV-algebra is semisimple iff the intersection of all its maximal ideals is $\{0\}$. Equivalently, A is semisimple iff it does not have infinitesimal elements.

Proposition

Let I be an ideal of an MV-algebra A. Then

- A / I is simple iff I is maximal.
- A / I is semisimple iff I is intersection of maximal ideals.

Duality for semisimple MV-algebras

Simple MV-algebras and $[0,1]$

Proposition

$[0,1]$ and all its subalgebras are simple.

Simple MV-algebras and $[0,1]$

Proposition

$[0,1]$ and all its subalgebras are simple.
In fact, these are all the simple MV-algebras.

Theorem (Chang 1958)

Each simple MV-algebra embeds in a unique way into $[0,1]$.

Simple MV-algebras and $[0,1]$

Proposition

$[0,1]$ and all its subalgebras are simple.
In fact, these are all the simple MV-algebras.

Theorem (Chang 1958)

Each simple $M V$-algebra embeds in a unique way into $[0,1]$.

What about semisimple MV-algebras?

Proposition

$[0,1]^{X}$ and all its subalgebras are semisimple.

Representation of semisimple MV-algebras

Theorem

If A is semisimple, then it embeds into $[0,1]^{\operatorname{Max}(A)}$.

Representation of semisimple MV-algebras

Theorem

If A is semisimple, then it embeds into $[0,1]^{\operatorname{Max}(A)}$.
Each $M \in \operatorname{Max}(A)$ is such that A / M embeds into $[0,1]$. Thus, if $a \in A$, we can define a map $\operatorname{Max}(A) \rightarrow[0,1]$ by associating to M the image of a / M under the embedding $A / M \hookrightarrow[0,1]$.

Representation of semisimple MV-algebras

Theorem

If A is semisimple, then it embeds into $[0,1]^{\operatorname{Max}(A)}$.
Each $M \in \operatorname{Max}(A)$ is such that A / M embeds into $[0,1]$. Thus, if $a \in A$, we can define a map $\operatorname{Max}(A) \rightarrow[0,1]$ by associating to M the image of a / M under the embedding $A / M \hookrightarrow[0,1]$.

Since the intersection of all maximal ideals of A is $\{0\}$, this defines an embedding $A \hookrightarrow[0,1]^{\operatorname{Max}(A)}$.

Representation of semisimple MV-algebras

How can we describe the image of the embedding of
$A \hookrightarrow[0,1]^{\operatorname{Max}(A)}$ when A is semisimple?

Representation of semisimple MV-algebras

How can we describe the image of the embedding of $A \hookrightarrow[0,1]^{\operatorname{Max}(A)}$ when A is semisimple?

We need to coordinatize $\operatorname{Max}(A)$. That is, embed $\operatorname{Max}(A)$ into $[0,1]^{\kappa}$ for some cardinal κ (Tychonoff cubes).

Representation of semisimple MV-algebras

How can we describe the image of the embedding of $A \hookrightarrow[0,1]^{\operatorname{Max}(A)}$ when A is semisimple?

We need to coordinatize $\operatorname{Max}(A)$. That is, embed $\operatorname{Max}(A)$ into $[0,1]^{\kappa}$ for some cardinal κ (Tychonoff cubes).

Suppose that $\left(g_{\alpha}\right)_{\alpha<\kappa}$ are generators of A. If $M \in \operatorname{Max}(A)$, we send M to $\left(r_{\alpha}\right)$ where r_{α} is the image of g_{α} / M under the embedding $A / M \hookrightarrow[0,1]$.

Representation of semisimple MV-algebras

How can we describe the image of the embedding of $A \hookrightarrow[0,1]^{\operatorname{Max}(A)}$ when A is semisimple?

We need to coordinatize $\operatorname{Max}(A)$. That is, embed $\operatorname{Max}(A)$ into $[0,1]^{\kappa}$ for some cardinal κ (Tychonoff cubes).

Suppose that $\left(g_{\alpha}\right)_{\alpha<\kappa}$ are generators of A. If $M \in \operatorname{Max}(A)$, we send M to $\left(r_{\alpha}\right)$ where r_{α} is the image of g_{α} / M under the embedding $A / M \hookrightarrow[0,1]$.

It turns out that $\operatorname{Max}(A)$ embeds into $[0,1]^{\kappa}$ as a closed subset. In particular when A is the free MV-algebra on κ generators (which is semisimple), $\operatorname{Max}(A)$ corresponds to the whole $[0,1]^{\kappa}$.

Representation of semisimple MV-algebras

How can we describe the image of the embedding of $A \hookrightarrow[0,1]^{\operatorname{Max}(A)}$ when A is semisimple?

We need to coordinatize $\operatorname{Max}(A)$. That is, embed $\operatorname{Max}(A)$ into $[0,1]^{\kappa}$ for some cardinal κ (Tychonoff cubes).

Suppose that $\left(g_{\alpha}\right)_{\alpha<\kappa}$ are generators of A. If $M \in \operatorname{Max}(A)$, we send M to $\left(r_{\alpha}\right)$ where r_{α} is the image of g_{α} / M under the embedding $A / M \hookrightarrow[0,1]$.

It turns out that $\operatorname{Max}(A)$ embeds into $[0,1]^{\kappa}$ as a closed subset. In particular when A is the free MV-algebra on κ generators (which is semisimple), $\operatorname{Max}(A)$ corresponds to the whole $[0,1]^{\kappa}$.

Theorem

If A is semisimple, then A is isomorphic to $\mathrm{PWL}_{\mathbb{Z}}(\operatorname{Max}(A))$.

Duality for semisimple MV-algebras

Applying a general duality approach due to Caramello, Marra, and Spada it is possible to obtain a duality for semisimple MV-algebras.

Theorem (Marra-Spada 2012)

The category of semisimple MV-algebras is dually equivalent to the category of closed subsets of Tychnoff cubes.

Duality for semisimple MV-algebras

Applying a general duality approach due to Caramello, Marra, and Spada it is possible to obtain a duality for semisimple MV-algebras.

Theorem (Marra-Spada 2012)

The category of semisimple MV-algebras is dually equivalent to the category of closed subsets of Tychnoff cubes.

To an MV-algebra A we associate the image of $\operatorname{Max}(A) \hookrightarrow[0,1]^{\kappa}$.

Duality for semisimple MV-algebras

Applying a general duality approach due to Caramello, Marra, and Spada it is possible to obtain a duality for semisimple MV-algebras.

Theorem (Marra-Spada 2012)

The category of semisimple MV-algebras is dually equivalent to the category of closed subsets of Tychnoff cubes.

To an MV-algebra A we associate the image of $\operatorname{Max}(A) \hookrightarrow[0,1]^{\kappa}$.
Vice versa, to a closed subset C of $[0,1]^{\kappa}$ we associate MV-algebra $\mathrm{PWL}_{\mathbb{Z}}(C)$.

Examples

Points in Tychonoff cubes correspond to simple MV-algebras.

Examples

Points in Tychonoff cubes correspond to simple MV-algebras.
Closed subsets of finite dimensional Tychonoff cubes correspond to finitely generated semisimple MV-algebras

Examples

Points in Tychonoff cubes correspond to simple MV-algebras.
Closed subsets of finite dimensional Tychonoff cubes correspond to finitely generated semisimple MV-algebras

Rational polyhedra in finite dimensional Tychonoff cubes correspond to finitely presented MV-algebras.

Examples

Points in Tychonoff cubes correspond to simple MV-algebras.
Closed subsets of finite dimensional Tychonoff cubes correspond to finitely generated semisimple MV-algebras

Rational polyhedra in finite dimensional Tychonoff cubes correspond to finitely presented MV-algebras.

$\mathrm{PWL}_{\mathbb{Z}}(T)$

Examples

Points in Tychonoff cubes correspond to simple MV-algebras.
Closed subsets of finite dimensional Tychonoff cubes correspond to finitely generated semisimple MV-algebras

Rational polyhedra in finite dimensional Tychonoff cubes correspond to finitely presented MV-algebras.

Examples

Points in Tychonoff cubes correspond to simple MV-algebras.
Closed subsets of finite dimensional Tychonoff cubes correspond to finitely generated semisimple MV-algebras

Rational polyhedra in finite dimensional Tychonoff cubes correspond to finitely presented MV-algebras.

Examples

Points in Tychonoff cubes correspond to simple MV-algebras.
Closed subsets of finite dimensional Tychonoff cubes correspond to finitely generated semisimple MV-algebras

Rational polyhedra in finite dimensional Tychonoff cubes correspond to finitely presented MV-algebras.

$$
\mathrm{PWL}_{\mathbb{Z}}(T) \cong \frac{\mathcal{F}(x, y)}{\langle\neg(x \oplus y), x \odot x \odot y\rangle}
$$

Extending the duality to all MV-algebras

Prime ideals

Our goal is to extend the duality for semisimple MV-algebras to all MV-algebras by working with prime ideals instead of maximal ideals.

Definition

A proper ideal $/$ of an MV-algebra A is prime if $x \wedge y \in I$ implies $x \in I$ or $y \in I$. We denote by $\operatorname{Spec}(A)$ the set of all prime ideals of A.

Prime ideals

Our goal is to extend the duality for semisimple MV-algebras to all MV-algebras by working with prime ideals instead of maximal ideals.

Definition

A proper ideal $/$ of an MV-algebra A is prime if $x \wedge y \in I$ implies $x \in I$ or $y \in I$. We denote by $\operatorname{Spec}(A)$ the set of all prime ideals of A.

Proposition

Let A be an MV-algebra and I a proper ideal of A. We have that

- I is prime iff A / I is linearly ordered.
- The intersection of all prime ideals of A is $\{0\}$.
- A embeds into a product of linearly ordered MV-algebras.

Di Nola Theorem

We need an MV-algebra in which we can embed the linearly ordered MV-algebras.

Theorem (Di Nola)

Let γ be an infinite cardinal. Then there exists an ultrapower \mathcal{U} of the MV-algebra $[0,1]$ such that every linearly ordered $M V$-algebra A with $|A| \leq \gamma$ embeds into \mathcal{U}.

Di Nola Theorem

We need an MV-algebra in which we can embed the linearly ordered MV-algebras.

Theorem (Di Nola)

> Let γ be an infinite cardinal. Then there exists an ultrapower \mathcal{U} of the MV-algebra $[0,1]$ such that every linearly ordered $M V$-algebra A with $|A| \leq \gamma$ embeds into \mathcal{U}.

\mathcal{U} is a linearly ordered MV-algebra containing $[0,1]$ and lots of infinitesimals. Any $f \in \mathrm{PWL}_{\mathbb{Z}}\left([0,1]^{\kappa}\right)$ can be extended to a function ${ }^{*} f: \mathcal{U}^{\kappa} \rightarrow \mathcal{U}$.

Di Nola Theorem

We need an MV-algebra in which we can embed the linearly ordered MV-algebras.

Theorem (Di Nola)

Let γ be an infinite cardinal. Then there exists an ultrapower \mathcal{U} of the MV-algebra $[0,1]$ such that every linearly ordered $M V$-algebra A with $|A| \leq \gamma$ embeds into \mathcal{U}.
\mathcal{U} is a linearly ordered MV-algebra containing $[0,1]$ and lots of infinitesimals. Any $f \in \mathrm{PWL}_{\mathbb{Z}}\left([0,1]^{\kappa}\right)$ can be extended to a function ${ }^{*} f: \mathcal{U}^{\kappa} \rightarrow \mathcal{U}$.
\mathcal{U}^{κ} can be endowed with the Zariski topology which is given by a basis of closed consisting of the sets $\left\{\left.x \in \mathcal{U}^{\kappa}\right|^{*} f(x)=0\right\}$ where f ranges in $\mathrm{PWL}_{\mathbb{Z}}\left([0,1]^{\kappa}\right)$. This topology is compact but not even T_{0}.

Coordinatize $\operatorname{Spec}(A)$

What happens if we try to coordinatize $\operatorname{Spec}(A)$ like we did with $\operatorname{Max}(A)$? For the embedding $A / P \hookrightarrow \mathcal{U}$ to exist we need $|A / P| \leq \gamma$ and the embedding is not necessarily unique.

Coordinatize $\operatorname{Spec}(A)$

What happens if we try to coordinatize $\operatorname{Spec}(A)$ like we did with $\operatorname{Max}(A)$? For the embedding $A / P \hookrightarrow \mathcal{U}$ to exist we need $|A / P| \leq \gamma$ and the embedding is not necessarily unique.

Suppose that $\left(g_{\alpha}\right)_{\alpha<\kappa}$ are generators of A with $\kappa \leq \gamma$. If $P \in \operatorname{Spec}(A)$, we send P to the set of all the $\left(r_{\alpha}\right) \in \mathcal{U}^{\kappa}$ for which there exists an embedding $A / P \hookrightarrow \mathcal{U}$ that maps g_{α} / M to r_{α} for all α.

Coordinatize $\operatorname{Spec}(A)$

What happens if we try to coordinatize $\operatorname{Spec}(A)$ like we did with $\operatorname{Max}(A)$? For the embedding $A / P \hookrightarrow \mathcal{U}$ to exist we need $|A / P| \leq \gamma$ and the embedding is not necessarily unique.

Suppose that $\left(g_{\alpha}\right)_{\alpha<\kappa}$ are generators of A with $\kappa \leq \gamma$. If $P \in \operatorname{Spec}(A)$, we send P to the set of all the $\left(r_{\alpha}\right) \in \mathcal{U}^{\kappa}$ for which there exists an embedding $A / P \hookrightarrow \mathcal{U}$ that maps g_{α} / M to r_{α} for all α.

Each $P \in \operatorname{Spec}(A)$ is now mapped to a closed subset of \mathcal{U}^{κ}. When κ is finite this subset looks like an "infinitesimal rational simplex".

Coordinatize $\operatorname{Spec}(A)$

What happens if we try to coordinatize $\operatorname{Spec}(A)$ like we did with $\operatorname{Max}(A)$? For the embedding $A / P \hookrightarrow \mathcal{U}$ to exist we need $|A / P| \leq \gamma$ and the embedding is not necessarily unique.

Suppose that $\left(g_{\alpha}\right)_{\alpha<\kappa}$ are generators of A with $\kappa \leq \gamma$. If $P \in \operatorname{Spec}(A)$, we send P to the set of all the $\left(r_{\alpha}\right) \in \mathcal{U}^{\kappa}$ for which there exists an embedding $A / P \hookrightarrow \mathcal{U}$ that maps g_{α} / M to r_{α} for all α.

Each $P \in \operatorname{Spec}(A)$ is now mapped to a closed subset of \mathcal{U}^{κ}. When κ is finite this subset looks like an "infinitesimal rational simplex".

So we can map $\operatorname{Spec}(A)$ to the union of all these subsets of \mathcal{U}^{κ}. This union turns out to be a closed subset of \mathcal{U}^{κ}. In particular when A is the free MV-algebra on κ generators, $\operatorname{Spec}(A)$ corresponds to the whole \mathcal{U}^{κ}.

Extending the duality to all MV-algebras

Applying the general duality approach of Caramello, Marra, and Spada it is possible to obtain also a duality for all MV-algebras.

Theorem (Carai-Lapenta-Spada)

The category of MV-algebras of cardinality at most γ is dually equivalent to the category of closed subsets of \mathcal{U}^{κ} with $\kappa \leq \gamma$.

Extending the duality to all MV-algebras

Applying the general duality approach of Caramello, Marra, and Spada it is possible to obtain also a duality for all MV-algebras.

Theorem (Carai-Lapenta-Spada)

The category of MV-algebras of cardinality at most γ is dually equivalent to the category of closed subsets of \mathcal{U}^{κ} with $\kappa \leq \gamma$.

To an MV-algebra A we associate the closed subset of \mathcal{U}^{κ} corresponding to $\operatorname{Spec}(A)$.

Extending the duality to all MV-algebras

Applying the general duality approach of Caramello, Marra, and Spada it is possible to obtain also a duality for all MV-algebras.

Theorem (Carai-Lapenta-Spada)

The category of MV-algebras of cardinality at most γ is dually equivalent to the category of closed subsets of \mathcal{U}^{κ} with $\kappa \leq \gamma$.

To an MV-algebra A we associate the closed subset of \mathcal{U}^{κ} corresponding to $\operatorname{Spec}(A)$.

Vice versa, to a closed subset C of \mathcal{U}^{κ} we associate the MV -algebra ${ }^{*} \mathrm{PWL}_{\mathbb{Z}}(C)$ given by the restrictions to C of all the ${ }^{*} f$ with $f \in \mathrm{PWL}_{\mathbb{Z}}\left([0,1]^{\kappa}\right)$.

Coordinatization of $\operatorname{Spec}(A)$

We would like to coordinatize $\operatorname{Spec}(A)$ (i.e. embed it into \mathcal{U}^{κ}) so that $A \cong{ }^{*} \mathrm{PWL}_{\mathbb{Z}}(\operatorname{Spec}(A))$.

Coordinatization of $\operatorname{Spec}(A)$

We would like to coordinatize $\operatorname{Spec}(A)$ (i.e. embed it into \mathcal{U}^{κ}) so that $A \cong{ }^{*} \mathrm{PWL}_{\mathbb{Z}}(\operatorname{Spec}(A))$.

We restrict to the case $\gamma=n \in \mathbb{N}$ where we can use:

Theorem

If $x \in \mathcal{U}^{n}$, then $x=x_{0}+\alpha_{1} v_{1}+\cdots+\alpha_{t} v_{t}$ where $\alpha_{1}, \ldots, \alpha_{t} \in \mathcal{U}$ are positive infinitesimals such that $\alpha_{i+1} / \alpha_{i}$ is infinitesimal, $x_{0} \in[0,1]^{n}$, and v_{1}, \ldots, v_{t} are orthonormal vectors in \mathbb{R}^{n}.

Coordinatization of $\operatorname{Spec}(A)$

We would like to coordinatize $\operatorname{Spec}(A)$ (i.e. embed it into \mathcal{U}^{κ}) so that $A \cong{ }^{*} \mathrm{PWL}_{\mathbb{Z}}(\operatorname{Spec}(A))$.

We restrict to the case $\gamma=n \in \mathbb{N}$ where we can use:

Theorem

If $x \in \mathcal{U}^{n}$, then $x=x_{0}+\alpha_{1} v_{1}+\cdots+\alpha_{t} v_{t}$ where $\alpha_{1}, \ldots, \alpha_{t} \in \mathcal{U}$ are positive infinitesimals such that $\alpha_{i+1} / \alpha_{i}$ is infinitesimal, $x_{0} \in[0,1]^{n}$, and v_{1}, \ldots, v_{t} are orthonormal vectors in \mathbb{R}^{n}.

Let x be any of the points of the "infinitesimal simplex" inside \mathcal{U}^{n} associated to P. Suppose $x=x_{0}+\alpha_{1} v_{1}+\cdots+\alpha_{t} v_{t}$.

Coordinatization of $\operatorname{Spec}(A)$

We would like to coordinatize $\operatorname{Spec}(A)$ (i.e. embed it into \mathcal{U}^{κ}) so that $A \cong{ }^{*} \mathrm{PWL}_{\mathbb{Z}}(\operatorname{Spec}(A))$.

We restrict to the case $\gamma=n \in \mathbb{N}$ where we can use:

Theorem

If $x \in \mathcal{U}^{n}$, then $x=x_{0}+\alpha_{1} v_{1}+\cdots+\alpha_{t} v_{t}$ where $\alpha_{1}, \ldots, \alpha_{t} \in \mathcal{U}$ are positive infinitesimals such that $\alpha_{i+1} / \alpha_{i}$ is infinitesimal, $x_{0} \in[0,1]^{n}$, and v_{1}, \ldots, v_{t} are orthonormal vectors in \mathbb{R}^{n}.

Let x be any of the points of the "infinitesimal simplex" inside \mathcal{U}^{n} associated to P. Suppose $x=x_{0}+\alpha_{1} v_{1}+\cdots+\alpha_{t} v_{t}$.

Apply a sort of Gram-Schmidt process to $\left(x_{0}, v_{1}, \ldots, v_{t}\right)$ to obtain $\left(x_{0}, w_{1}, \ldots, w_{s}\right)$.

Coordinatization of $\operatorname{Spec}(A)$

We would like to coordinatize $\operatorname{Spec}(A)$ (i.e. embed it into \mathcal{U}^{κ}) so that $A \cong{ }^{*} \mathrm{PWL}_{\mathbb{Z}}(\operatorname{Spec}(A))$.

We restrict to the case $\gamma=n \in \mathbb{N}$ where we can use:

Theorem

If $x \in \mathcal{U}^{n}$, then $x=x_{0}+\alpha_{1} v_{1}+\cdots+\alpha_{t} v_{t}$ where $\alpha_{1}, \ldots, \alpha_{t} \in \mathcal{U}$ are positive infinitesimals such that $\alpha_{i+1} / \alpha_{i}$ is infinitesimal, $x_{0} \in[0,1]^{n}$, and v_{1}, \ldots, v_{t} are orthonormal vectors in \mathbb{R}^{n}.

Let x be any of the points of the "infinitesimal simplex" inside \mathcal{U}^{n} associated to P. Suppose $x=x_{0}+\alpha_{1} v_{1}+\cdots+\alpha_{t} v_{t}$.

Apply a sort of Gram-Schmidt process to $\left(x_{0}, v_{1}, \ldots, v_{t}\right)$ to obtain $\left(x_{0}, w_{1}, \ldots, w_{s}\right)$.

Fix any infinitesimal ε and then associate to P the point $x_{0}+\varepsilon w_{1}+\cdots+\varepsilon^{s} w_{s} \in \mathcal{U}^{n}$.

Example: Chang

Other dualities

Riesz MV-algebras

Definition

A Riesz MV-algebra is a structure (R, \cdot) where R is an MV-algebra and $\cdot:[0,1] \times R \rightarrow R$ is such that

1. If $x \odot y=0$, then $(r x) \odot(r y)=0$ and $r(x \oplus y)=r x \oplus r y$.
2. If $r \odot q=0$, then $(r x) \odot(q x)=0$ and $(r \oplus q) x=r x \oplus r y$.
3. $(r q) x=r(q x)$.
4. $1 x=x$.

Riesz MV-algebras

Definition

A Riesz MV-algebra is a structure (R, \cdot) where R is an MV-algebra and $\cdot:[0,1] \times R \rightarrow R$ is such that

1. If $x \odot y=0$, then $(r x) \odot(r y)=0$ and $r(x \oplus y)=r x \oplus r y$.
2. If $r \odot q=0$, then $(r x) \odot(q x)=0$ and $(r \oplus q) x=r x \oplus r y$.
3. $(r q) x=r(q x)$.
4. $1 x=x$.

We proved an analogous duality result in this setting. The main differences are that the piecewise linear functions can have non-integer coefficients and hence the Zariski topology on \mathcal{U}^{κ} is finer.

Abelian ℓ-groups and Riesz spaces

We also proved an analogous duality for abelian I-groups and Riesz spaces (real vector lattices). This result generalizes the Baker-Beynon duality.

Abelian l-groups and Riesz spaces

We also proved an analogous duality for abelian I-groups and Riesz spaces (real vector lattices). This result generalizes the Baker-Beynon duality.

Here are the main differences from the MV-algebras and Riesz MV-algebras case:

- Instead of working with an ultrapower of $[0,1]$, we have an ultrapower of \mathbb{R}.
- The linear pieces of piecewise linear functions are homogeneous.
- Infinitesimal simplexes are replaced by infinitesimal cones.

THANK YOU!

