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Predicate Gödel translation

IQC = intuitionistic predicate calculus
QS4 = predicate S4

(−)t : IQC −→ QS4

⊥t = ⊥
P(x1, . . . , xn)t = �P(x1, . . . , xn)

(A ∧ B)t = At ∧ Bt

(A ∨ B)t = At ∨ Bt

(A→ B)t = �(At → Bt)
(∀xA)t = �∀xAt

(∃xA)t = ∃xAt



Predicate Gödel translation

Theorem

For any intuitionistic formula A, we have

IQC ` A iff QS4 ` At

A standard way to prove this result is to use syntax to show faithfulness an
semantics to show fullness.
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Kripke semantics for IQC

Definition

An IQC-frame is a triple F = (W ,R,D) where

W is a nonempty set whose elements are called the worlds of F.

R is a partial order on W .

D is a function that associates to each w ∈W a nonempty set Dw

such that wRv implies Dw ⊆ Dv for each w , v ∈W . The set Dw is
called the domain of w .

A model M is given by a frame together with an interpretation of
each predicate symbol.

An n-ary predicate symbol is interpreted in each w ∈W as an n-ary
relation on Dw such that if wRv , then the relation on Dv extends the
relation on Dw .
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Kripke semantics for IQC

Truth in a model is defined in the usual inductive way. When a formula A
is true in a world w of a model M, we write M �w A. We recall the truth
conditions for the quantifiers:

M �w ∀xA iff A is true for every object of the domain
of every world accessible from w .

M �w ∃xA iff A is true for some object in the domain of w .
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Kripke semantics for IQC

The definition of validity in a frame is the usual one. When a formula A is
valid in F, we write F � A.

Theorem (Kripke 1965)

The intuitionistic predicate logic IQC is sound and complete with respect
to Kripke semantics; that is, for each formula A,

IQC ` A iff F � A for each IQC-frame F.
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Removing asymmetry via the temporal interpretation

M �w ∀xA iff A is true for every object of the domain
of every world accessible from w .

A is true for every object in the future.

M �w ∃xA iff A is true for some object of the domain
of some world from which w is accessible.

A is true for some object in the past.
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Tense language

We consider a tense language containing two modalities

�F interpreted as “always in the future”, and

�P interpreted as “always in the past”.

Consequently

♦F := ¬�F¬ is interpreted as “sometime in the future”, and

♦P := ¬�P¬ is interpreted as “sometime in the past”.
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Modified Gödel translation

We then modify the Gödel translation accordingly.

⊥t = ⊥
P(x1, . . . , xn)t = �FP(x1, . . . , xn)

(A ∧ B)t = At ∧ Bt
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(A→ B)t = �F (At → Bt)
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(∃xA)t = ♦P∃xAt

We need to find the tense predicate logic that is the right target of this
modified translation.
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S4.t

The standard tense extension of S4 is S4.t.

Definition

The logic S4.t is the least set of propositional temporal formulas
containing all substitution instances of S4-axioms for both �F and �P ,
the axiom schemes

1 A→ �P♦FA

2 A→ �F♦PA

and closed under the inference rules

A A→ B
B

Modus Ponens (MP)

A
�FA

�F -Necessitation (NF) A
�PA

�P -Necessitation (NP)



Kripke semantics for S4.t

Kripke frames and models for S4.t coincide with the ones for S4. The
truth conditions for the classical connectives are standard and for the
temporal modalities we have the following conditions:

Definition

M �w �FA iff (∀v ∈W )(wRv ⇒M �v A)
M �w �PA iff (∀v ∈W )(vRw ⇒M �v A)



QS4.t

By adding standard classical predicate axioms we obtain the predicate
extension QS4.t of S4.t. This is a natural candidate to be the target of the
modified translation.

Among these axioms there is the universal instantiation axiom which will
be fundamental in our considerations.

∀xA→ A(y/x) Universal instantiation (UI)
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Barcan and converse Barcan formulas for tense logics

Two formula schemes play an important role in predicate modal logic.
They are called converse Barcan formula and Barcan formula.

�∀xA→ ∀x�A converse Barcan formula (CBF)
∀x�A→ �∀xA Barcan formula (BF)

They are valid in frames with increasing and decreasing domains,
respectively.
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Indeed, QS4.t is complete with respect to the class of Kripke frames with
constant domains.



QS4.t cannot be the target

∀x(A ∨ B)→ (A ∨ ∀xB) with x not free in A (CD)

The following facts are well known.

Let F be an IQC-frame. F � CD iff F has constant domains.

IQC 0 CD

QS4.t ` (CD)t because QS4.t ` BFF,CBFP

Therefore, QS4.t is not the right candidate to be the target of our
temporal translation.

The formulas CBFF,CBFP,BFF,BFP all need the universal instantiation
axiom (UI) to be proved.

Thus, we consider logics where UI is replaced by its weaker version

∀y(∀xA→ A(y/x))
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History

Kripke (1963) was the first to consider the weak universal
instantiation axiom. His goal was to have a predicate modal logic
whose semantics did not require increasing domains. He gave a
semantics for this logic but he did not prove completeness.

Hughes and Cresswell (1996) introduced a similar predicate modal
logic and proved its completeness with respect to a generalized Kripke
semantics.

Fitting and Mendelsohn (1998) gave an alternate axiomatization of
this logic.

Corsi (2002) defined the system Q◦.K and proved its completeness
with respect to a generalized Kripke semantics.
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Generalized Kripke semantics

Generalized Kripke frames are predicate Kripke frames in which each world
has two domains: an inner domain contained in an outer domain. There is
no restriction on inner domains while the outers are nonempty and
increasing.

Variables and predicate symbols are interpreted in the outer domains. The
quantifiers are interpreted in the inner domains as follows:

Definition

M �w ∀xA iff A is true for every object of the inner domain of w .
M �w ∃xA iff A is true for some object of the inner domain of w .
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Corsi’s completeness results

Variables are interpreted in the outer domains and quantifiers in the inner
domains. Thus, the universal instantiation axiom ∀xA→ A(y/x) is not
valid in these frames. On the other hand, its weaker version
∀y(∀xA→ A(y/x)) is.

Theorem (Corsi 2002)

Q◦.K is sound and complete with respect to the class of all
generalized Kripke frames.

Q◦.K + CBF is sound and complete with respect to the class of
generalized Kripke frames with increasing inner domains.

Q◦.K + CBF + BF is sound and complete with respect to the class of
generalized Kripke frames with constant inner domains.

As far as we know, it is still an open problem whether Q◦.K + BF is
complete with respect to the class of generalized Kripke frames with
decreasing inner domains.
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Generalized Kripke semantics for Q◦S4.t

We want to define a predicate tense logic that we call Q◦S4.t whose
intended semantics is given by the following generalized Kripke frames.

Definition

A Q◦S4.t-frame is a quadruple F = (W ,R,D,U) where

W is a nonempty set of worlds.

R is a quasi-order on W .

D is a function that associates to each w ∈W a nonempty set Dw

such that wRv implies Dw ⊆ Dv for each w , v ∈W . The set Dw is
called the inner domain of w .

U is a set containing Dw for all w ∈W . It is called the outer domain
of F.

We want to interpret predicate symbols and variables in the outer domain
U while the scopes of the quantifiers are the inner domains.
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Q◦S4.t

We define the tense predicate logic Q◦S4.t by combining S4.t and Q◦.K.

Definition

The logic Q◦S4.t is the least set of temporal formulas containing all the
substitution instances of the S4.t-axioms, the axiom schemes

1 ∀y(∀xA→ A(y/x)) (UI◦)

2 ∀x(A→ B)→ (∀xA→ ∀xB)

3 ∀x∀yA↔ ∀y∀xA
4 A→ ∀xA with x not free in A

5 ∀xA→ A with x not free in A (NID)

6 �F∀xA→ ∀x�FA (CBFF)

and closed under (MP), (Gen), (NF), and (NP).

We add the axioms NID (nonempty inner domains) and CBFF (converse
Barcan for �F ) because we want nonemtpy increasing inner domains.
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Generalized Kripke semantics for Q◦S4.t

Theorem

Q◦S4.t is sound with respect to the class of Q◦S4.t-frames; that is, for
each formula A
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We follow the usual proof of faithfulness and fullness using syntax and
semantics, respectively.
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The lemma is proved syntactically by induction on the length of the
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Fullness

Lemma

IQC 0 A ⇒ Q◦S4.t 0 ∀x1 · · · ∀xnAt

The lemma is proved by transforming each IQC-model into a
Q◦S4.t-model.

Definition

For an IQC-model M based on the frame (W ,R,D), let M be the
Q◦S4.t-model based on the generalized Kripke frame (W ,R,D,U)
where U =

⋃
{Dw | w ∈W }.

Theorem

If M 2 A then M 2 ∀x1 · · · ∀xnAt .
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Open problems and future directions

1 Completeness of Q◦S4.t with respect to generalized Kripke semantics.

2 More general semantics for Q◦S4.t such as (pre)sheaf semantics.

3 Extending this result to intermediate logics.

4 Study of logics with weak universal instantiation axiom.
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Thanks for your attention!
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