Baker-Beynon duality beyond semisimplicity

Luca Carai, Universitat de Barcelona

Joint work with: Serafina Lapenta and Luca Spada

Algebra Week
Università di Siena, 5 July 2023

Structure of the talk

Part I: Generalize Baker-Beynon duality to non-semisimple abelian ℓ-groups and Riesz spaces.

Part II: Non-standard analysis techniques to get a geometrical understanding of the dual objects.

Part I

A generalization of Baker-Beynon duality

Baker-Beynon duality

Definition

- An (abelian) ℓ-group is an abelian group A equipped with a lattice order such that $a \leq b$ implies $a+c \leq b+c$ for every $a, b, c \in A$.
- A Riesz space V is an \mathbb{R}-vector space equipped with a lattice order such that it is an ℓ-group and $0 \leq r$ and $0 \leq v$ imply $r v \geq 0$ for each $r \in \mathbb{R}$ and $v \in V$.
ℓ-groups and Riesz spaces can be axiomatized by equations, and so they form varieties.

Definition

- A map between ℓ-groups is an ℓ-group homomorphism if it is a group and a lattice homomorphism.
- An ℓ-group homomorphism between Riesz spaces is a Riesz space homomorphism if it is a linear map.

Examples of Riesz spaces

- \mathbb{R}
- \mathbb{R}^{X} for a set X
- $\mathbb{R} \overrightarrow{\times} \mathbb{R}$ (lexicographic product)
- $C(X, \mathbb{R})$ for a topological space X
- $L^{p}\left(\mathbb{R}^{n}\right)$

Examples of ℓ-groups

- All the examples above
- \mathbb{Z}
- \mathbb{Z}^{X} for a set X
- $\mathbb{Z} \vec{x} \mathbb{Z}$
- \mathbb{Q}

Definition

- A continuous function $f: \mathbb{R}^{\kappa} \rightarrow \mathbb{R}$ is piecewise linear (homogeneous) if there exist $g_{1}, \ldots, g_{n}: \mathbb{R}^{\kappa} \rightarrow \mathbb{R}$ linear homogeneous functions (each in finitely many variables) such that for each $x \in \mathbb{R}^{\kappa}$ we have $f(x)=g_{i}(x)$ for some $i=1, \ldots, n$.
- We say that a piecewise linear function f has integer coefficients, if it is defined by g_{1}, \ldots, g_{n} with integer coefficients.

Definition

- A continuous function $f: \mathbb{R}^{\kappa} \rightarrow \mathbb{R}$ is piecewise linear (homogeneous) if there exist $g_{1}, \ldots, g_{n}: \mathbb{R}^{\kappa} \rightarrow \mathbb{R}$ linear homogeneous functions (each in finitely many variables) such that for each $x \in \mathbb{R}^{\kappa}$ we have $f(x)=g_{i}(x)$ for some $i=1, \ldots, n$.
- We say that a piecewise linear function f has integer coefficients, if it is defined by g_{1}, \ldots, g_{n} with integer coefficients.

We denote by

- $\operatorname{PWL}\left(\mathbb{R}^{\kappa}\right)$ the Riesz space of piecewise linear functions $f: \mathbb{R}^{\kappa} \rightarrow \mathbb{R}$;
- $\mathrm{PWL}_{\mathbb{Z}}\left(\mathbb{R}^{\kappa}\right)$ the ℓ-group of piecewise linear functions $f: \mathbb{R}^{\kappa} \rightarrow \mathbb{R}$ with integer coefficients.

Theorem (Baker 1968)

Let κ be a cardinal number.

- The free Riesz space on κ generators is isomorphic to $\operatorname{PWL}\left(\mathbb{R}^{\kappa}\right)$.
- The free ℓ-group on κ generators is isomorphic to $\mathrm{PWL}_{\mathbb{Z}}\left(\mathbb{R}^{\kappa}\right)$.
- The element $[t]$ of the free algebra correspond to the piecewise linear function that maps $x \in \mathbb{R}^{\kappa}$ to $t(x) \in \mathbb{R}$.
- The free generators of the free algebra correspond to the projections maps onto each coordinate.

If $X \subseteq \mathbb{R}^{\kappa}$, we denote

- $\operatorname{PWL}(X)=\left\{\left.f\right|_{X}\right.$ with $\left.f \in \operatorname{PWL}\left(\mathbb{R}^{\kappa}\right)\right\}$,
- $\mathrm{PWL}_{\mathbb{Z}}(X)=\left\{\left.f\right|_{X}\right.$ with $\left.f \in \mathrm{PWL}_{\mathbb{Z}}\left(\mathbb{R}^{\kappa}\right)\right\}$.

Which Riesz spaces (ℓ-groups) are isomorphic to $\operatorname{PWL}(X)\left(\mathrm{PWL}_{\mathbb{Z}}(X)\right)$ for some $X \subseteq \mathbb{R}^{\kappa}$?

Congruences in ℓ-groups and Riesz spaces correspond to ℓ-ideals.

Definition

An ℓ-ideal in a Riesz space (ℓ-group) is a subgroup $/$ that is convex, i.e. $|a| \leq|b|$ and $b \in I$ imply $a \in I$.
ℓ-ideals in Riesz spaces are automatically vector subspaces.

Definition

- A proper ℓ-ideal is called maximal if it is maximal wrt inclusion.
- A nontrivial Riesz space (ℓ-group) A is simple if $\{0\}$ and A are the only ℓ-ideals of A.
- A Riesz space (ℓ-group) is semisimple if the intersection of all its maximal ℓ-ideals is $\{0\}$.

Proposition

- An ℓ-group is simple iff it embeds into \mathbb{R}.
- A Riesz space is simple iff it is isomorphic to \mathbb{R}.
- An ℓ-group is semisimple iff it can be subdirectly embedded into a product of sub- ℓ-groups of \mathbb{R}.
- A Riesz space is semisimple iff it can be subdirectly embedded into a power of \mathbb{R}.

Examples

- $\mathbb{R} \overrightarrow{\times} \mathbb{R}$ and $\mathbb{Z} \overrightarrow{\times} \mathbb{Z}$ with the lexicographic order are not semisimple (and hence not simple).
- \mathbb{R} is simple as a ℓ-group and as a Riesz space.
- \mathbb{Z} and \mathbb{Q} are simple ℓ-groups.
- $C(X, \mathbb{R})$ is semisimple for any topological space X.
- $\operatorname{PWL}(X)$ and $\mathrm{PWL}_{\mathbb{Z}}(X)$ are semisimple for any $X \subseteq \mathbb{R}^{\kappa}$.
- Every semisimple Riesz space is isomorphic to $\operatorname{PWL}(X)$ for some $X \subseteq \mathbb{R}^{\kappa}$.
- Every semisimple ℓ-group is isomorphic to $\mathrm{PWL}_{\mathbb{Z}}(X)$ for some $X \subseteq \mathbb{R}^{\kappa}$.

Theorem (Baker 1968)

- Every semisimple Riesz space is isomorphic to PWL(C) for some closed cone $C \subseteq \mathbb{R}^{\kappa}$.
- Every semisimple ℓ-group is isomorphic to $\mathrm{PWL}_{\mathbb{Z}}(C)$ for some closed cone $C \subseteq \mathbb{R}^{\kappa}$.

Definition

A nonempty subset $C \subseteq \mathbb{R}^{\kappa}$ is a closed cone if it is closed under multiplication by nonnegative scalars and it is closed in \mathbb{R}^{κ} with the euclidean topology.

Let \mathscr{F}_{κ} be the free Riesz space (ℓ-group) over κ generators.
For any $T \subseteq \mathscr{F}_{\kappa}$ and $S \subseteq \mathbb{R}^{\kappa}$, we define the following operators.

$$
\begin{aligned}
\mathrm{V}(T) & =\left\{x \in \mathbb{R}^{\kappa} \mid t(x)=0 \text { for all }[t] \in T\right\} \\
\mathrm{I}(S) & =\left\{[t] \in \mathscr{F}_{\kappa} \mid t(x)=0 \text { for all } x \in S\right\} .
\end{aligned}
$$

Galois connection

$$
T \subseteq \mathrm{I}(S) \quad \text { iff } \quad S \subseteq \vee(T)
$$

- $\mathrm{V}(T)$ is always a closed cone of \mathbb{R}^{κ}.
- I(S) is always an ℓ-ideal of $\mathscr{F}{ }_{k}$.

What are the fixpoints of the Galois connection?

$S=\mathrm{VI}(S)$ iff S is a closed cone in \mathbb{R}^{κ}.

S is a fixpoint iff $S=\mathrm{V}(T)$ for some $T \subseteq \mathscr{F}_{\kappa} \cong \operatorname{PWL}\left(\mathbb{R}^{\kappa}\right)$. It can be shown that closed cones are exactly the vanishing sets of families of piecewise linear functions (with integer coefficients) on \mathbb{R}^{κ}.
$T=\operatorname{IV}(T)$ iff T is a ℓ-ideal of \mathscr{F}_{κ} that is intersection of maximal ℓ-ideals.
T is a fixpoint iff $T=\mathrm{I}(S)$ for some $S \subseteq \mathbb{R}^{\kappa}$ iff $T=\bigcap\{\mathrm{I}(x) \mid x \in S\}$. The proper ℓ-ideals of the form $I(x)$ for some $x \in \mathbb{R}^{\kappa}$ are exactly the maximal ideals of \mathscr{F}_{κ} (follows from the characterization of simple algebras).

Proposition

The poset of ℓ-ideals of \mathscr{F}_{κ} that are intersections of maximal ℓ-ideals is dually isomorphic to the poset of closed cones in \mathbb{R}^{κ}.

We can extend this dual isomorphism to a dual equivalence of categories between the category of semisimple Riesz spaces (ℓ-groups) and the category of closed cones.

On objects:

Let A be a semisimple Riesz space (ℓ-group), then $A \cong \mathscr{F}_{\kappa} / J$, where J is an intersection of maximal ℓ-ideals of $\mathscr{F}{ }_{\kappa}$. Then map

$$
A \mapsto \mathrm{~V}(J),
$$

where $\mathrm{V}(J)$ is a closed cone in \mathbb{R}^{κ}.
Let C be a closed cone in \mathbb{R}^{κ}. Then map

$$
C \mapsto \operatorname{PWL}(C)
$$

which is semisimple and isomorphic to $\mathscr{F}_{\kappa} / \mathrm{I}(C)$. (In the case of ℓ-groups $\operatorname{map} C$ to $\mathrm{PWL}_{\mathbb{Z}}(C)$.)

On morphisms:

Let $h: A \rightarrow B$ be a Riesz space (ℓ-group) homomorphism with $A \cong \mathscr{F}_{\kappa} / J_{A}$ and $B \cong \mathscr{F}_{\mu} / J_{B}$. Then map

$$
h \mapsto f_{h},
$$

with $f_{h}: \mathrm{V}\left(J_{B}\right) \rightarrow \mathrm{V}\left(J_{A}\right)$ the piecewise linear map whose $i^{\text {th }}$ component is given by $h\left(\left[a_{i}\right]\right) \in \mathscr{F}_{\mu} / J_{B}$ where a_{i} is the $i^{\text {th }}$ generator of \mathscr{F}_{k}.

Let $f: C \rightarrow D$ be a piecewise linear function (with integer coefficients) between closed cones. Then map

$$
f \rightarrow h_{f},
$$

where $h_{f}: \operatorname{PWL}(D) \rightarrow \operatorname{PWL}(C)$ is given by $h_{f}(g)=g \circ f$ (in the case of ℓ-groups we have $\left.h_{f}: \mathrm{PWL}_{\mathbb{Z}}(D) \rightarrow \mathrm{PWL}_{\mathbb{Z}}(C)\right)$.

These functors yield the Baker-Beynon duality:

Theorem (Beynon 1974)

- The category of semisimple Riesz spaces is dually equivalent to the category of closed cones in \mathbb{R}^{κ} and piecewise linear maps with real coefficients.
- The category of semisimple ℓ-groups is dually equivalent to the category of closed cones in \mathbb{R}^{κ} and piecewise linear maps with integer coefficients.
\mathbb{R} (as a Riesz space) is dual to the semiline $\{x \in \mathbb{R} \mid x \geq 0\}$.

\mathbb{R} (as a Riesz space) is dual to the semiline $\{x \in \mathbb{R} \mid x \geq 0\}$. Indeed, $\mathbb{R} \cong \operatorname{PWL}(\{x \in \mathbb{R} \mid x \geq 0\})$.

$\mathscr{F}_{2} /\langle(x-y) \wedge y \wedge 0\rangle$ is dual to $\left\{(x, y) \in \mathbb{R}^{2} \mid 0 \leq y \leq x\right\}$.

Generalizing Baker-Beynon duality beyond semisimplicity

In the definition of the operators

$$
\begin{aligned}
\mathrm{V}(T) & =\left\{x \in \mathbb{R}^{\kappa} \mid t(x)=0 \text { for all }[t] \in T\right\} \text { with } T \subseteq \mathscr{F}_{\kappa} \\
\mathrm{I}(S) & =\left\{[t] \in \mathscr{F}_{\kappa} \mid t(x)=0 \text { for all } x \in S\right\} \text { with } S \subseteq \mathbb{R}^{\kappa} .
\end{aligned}
$$

we can replace \mathbb{R} with any Riesz space (ℓ-group) A and still get a Galois connection.

In the definition of the operators

$$
\begin{aligned}
\mathrm{V}(T) & =\left\{x \in A^{\kappa} \mid t(x)=0 \text { for all }[t] \in T\right\} \text { with } T \subseteq \mathscr{F}_{\kappa} \\
\mathrm{I}(S) & =\left\{[t] \in \mathscr{F}_{\kappa} \mid t(x)=0 \text { for all } x \in S\right\} \text { with } S \subseteq A^{\kappa} .
\end{aligned}
$$

we can replace \mathbb{R} with any Riesz space (ℓ-group) A and still get a Galois connection.

Caramello, Marra, and Spada (2021) observed that this can be done for any variety of algebras by replacing \mathbb{R} with any algebra in that variety. They also show that this approach also works in a more categorical setting.

Our goal is to replace \mathbb{R} with a Riesz space that guarantees more ℓ-ideals of $\mathscr{F}{ }_{\kappa}$ to be fixpoints of IV. In this way we extend Baker-Beynon duality beyond semisimple Riesz spaces and ℓ-groups.

It is not possible to obtain a Riesz space (ℓ-group) A such that for any κ the fixpoints of IV are all the ℓ-ideals of \mathscr{F}_{κ}. This is a consequence of the fact that there are subdirectly irreducible Riesz spaces (ℓ-groups) of arbitrarily large cardinality.

However, if we fix a cardinal α, we will see that we can find A such that for any $\kappa<\alpha$ the fixpoints of IV are all the ideals of \mathscr{F}_{κ}.

We will see how this yields a duality for all Riesz spaces (ℓ-groups) that are κ-generated (i.e. generated by a set of cardinality at most κ) with $\kappa<\alpha$. In particular, we obtain a duality for all finitely generated Riesz spaces (ℓ-groups) by taking $\alpha=\omega$.

We will replace maximal ℓ-ideals with prime ℓ-ideals.

Definition

An ℓ-ideal I is prime if $a \wedge b \in I$ implies $a \in I$ or $b \in I$.

Theorem

- A/I is linearly ordered iff I is prime.
- Every ℓ-ideal is intersection of prime ℓ-ideals.
- Every Riesz space (ℓ-group) is subdirect product of linearly ordered ones.

We fix a cardinal α and we look for a Riesz space (ℓ-group) A into which all the κ-generated with $\kappa<\alpha$ linearly ordered Riesz spaces (ℓ-groups) embed.

Theorem (C., Lapenta, Spada)

Let α be a cardinal. There exists an ultrapower \mathcal{U} of \mathbb{R} in which all κ-generated (with $\kappa<\alpha$) linearly ordered Riesz spaces and ℓ-groups embed.

Proof sketch.

- The theory of nontrivial linearly ordered Riesz spaces is complete. So, each lin. ordered Riesz space $A \neq 0$ is elementarily equivalent to \mathbb{R}.
- Thus, for any cardinal β there is an ultrapower of \mathbb{R} into which all the linearly ordered Riesz spaces of cardinality less than β embed.
- Since a Riesz space that is κ-generated has cardinality at most $\max \left(\kappa, 2^{\omega}\right)$, it is sufficient to take $\beta=\max \left(\alpha, 2^{\omega}\right)$.

For $\alpha=\omega$ we have can pick \mathcal{U} as follows:

Proposition

Let \mathcal{U} be any ultrapower of \mathbb{R} over a nonprincipal ultrafilter of a countably infinite set. Then every finitely generated linearly ordered Riesz space and ℓ-group embeds into \mathcal{U}.

Fix a cardinal α and \mathcal{U} an ultrapower of \mathbb{R} in which all κ-generated with $\kappa<\alpha$ linearly ordered Riesz spaces and ℓ-groups embed. κ will denote an arbitrary cardinal smaller than α.
We consider the operators:

$$
\begin{aligned}
\mathrm{V}(T) & =\left\{x \in \mathcal{U}^{\kappa} \mid t(x)=0 \text { for all }[t] \in T\right\} \text { with } T \subseteq \mathscr{F}_{\kappa} \\
\mathrm{I}(S) & =\left\{[t] \in \mathscr{F}_{\kappa} \mid t(x)=0 \text { for all } x \in S\right\} \text { with } S \subseteq \mathcal{U}^{\kappa}
\end{aligned}
$$

Galois connection

$$
T \subseteq \mathrm{I}(S) \quad \text { iff } \quad S \subseteq \mathrm{~V}(T)
$$

- $T=\operatorname{IV}(T)$ iff T is an ℓ-ideal of \mathscr{F}_{κ}.
- We call $S \subseteq \mathcal{U}^{\kappa}$ such that $S=\mathrm{VI}(S)$ a generalized closed cone (Z-generalized closed cone).

Proposition

The poset of ℓ-ideals of $\mathscr{F}{ }_{\kappa}$ is dually isomorphic to the poset of generalized closed cones (\mathbb{Z}-generalized closed cones) in \mathcal{U}^{κ}.

Definition

- We say that a map $\mathcal{U}^{\kappa} \rightarrow \mathcal{U}^{\mu}$ is definable (\mathbb{Z}-definable) if its components are defined by terms in the language of Riesz spaces (ℓ-groups).
- If $X \subseteq \mathcal{U}^{\kappa}$, we denote by $\operatorname{Def}(X)$ and $\operatorname{Def}_{\mathbb{Z}}(X)$ the sets of definable maps and \mathbb{Z}-definable maps $f: X \rightarrow \mathcal{U}$.

The functors $A \cong \mathscr{F}_{\kappa} / J \mapsto \mathrm{~V}(J)$ and $C \mapsto \operatorname{Def}(C) \cong \mathscr{F}_{\kappa} / \mathrm{I}(C)$ induce:

Theorem (C., Lapenta, Spada)

- The category of κ-generated Riesz spaces (with $\kappa<\alpha$) is dually equivalent to the category of generalized closed cones in \mathcal{U}^{κ} (with $\kappa<\alpha$) and definable maps.

Definition

- We say that a map $\mathcal{U}^{\kappa} \rightarrow \mathcal{U}^{\mu}$ is definable (Z्Z-definable) if its components are defined by terms in the language of Riesz spaces (ℓ-groups).
- If $X \subseteq \mathcal{U}^{\kappa}$, we denote by $\operatorname{Def}(X)$ and $\operatorname{Def}_{\mathbb{Z}}(X)$ the sets of definable maps and \mathbb{Z}-definable maps $f: X \rightarrow \mathcal{U}$.

The functors $A \cong \mathscr{F}_{\kappa} / J \mapsto \mathrm{~V}(J)$ and $C \mapsto \operatorname{Def}_{\mathbb{Z}}(C) \cong \mathscr{F}_{\kappa} / \mathrm{I}(C)$ induce:

Theorem (C., Lapenta, Spada)

- The category of κ-generated Riesz spaces (with $\kappa<\alpha$) is dually equivalent to the category of generalized closed cones in \mathcal{U}^{κ} (with $\kappa<\alpha$) and definable maps.
- The category of κ-generated ℓ-groups (with $\kappa<\alpha$) is dually equivalent to the category of \mathbb{Z}-generalized closed cones in \mathcal{U}^{κ} (with $\kappa<\alpha$) and \mathbb{Z}-definable maps.

Consequences and applications of the duality

Proposition

- The generalized closed cones in \mathcal{U}^{κ} (together with \varnothing) form the closed of a topology on \mathcal{U}^{κ}. The closure of a nonempty $X \subseteq \mathcal{U}^{\kappa}$ is $\mathrm{VI}(X)$.
- \mathbb{R}^{κ} is a subset of \mathcal{U}^{κ} and the closed subsets of \mathbb{R}^{κ} with the subspace topology are exactly the closed cones (and \varnothing).

We obtain the following correspondences:

\mathscr{F}_{κ}	\mathbb{R}^{κ}	\mathcal{U}^{κ}
maximal ℓ-ideals	half-lines from the origin	closures of points of \mathbb{R}^{κ} (except the origin)
intersections of maximal ℓ-ideals	closed cones	closures of nonempty subsets of \mathbb{R}^{κ}
prime ℓ-ideals		irreducible closed subsets $=$ closures of points of \mathcal{U}^{κ} (except the origin)
ℓ-ideals		generalized closed cones

If A is a Riesz space (ℓ-group), then $\operatorname{Spec}(A)=\{$ prime ℓ-ideals of $A\}$ is called the spectrum of A and is naturally equipped with the Zariski topology generated by the closed subsets $\{P \in \operatorname{Spec}(A) \mid a \in P\}$, where a ranges in A.
If P is a prime ℓ-ideal of \mathscr{F}_{κ}, then $\mathrm{V}(P)$ is the closure of a point of \mathcal{U}^{κ}.
Choose one such point $x_{P} \in \mathcal{U}^{\kappa}$ for each $P \in \operatorname{Spec}\left(\mathscr{F}_{\kappa}\right)$. Let
$\mathscr{E}: \operatorname{Spec}\left(\mathscr{F}_{\kappa}\right) \rightarrow \mathcal{U}^{\kappa}$ be defined by $\mathscr{E}(P)=x_{P}$.

Theorem (C., Lapenta, Spada)

- \mathscr{E} is a topological embedding.
- \mathscr{E}^{-1} is a complete lattice isomorphism between $\operatorname{Op}\left(\mathcal{U}^{\kappa} \backslash\{O\}\right)$ and $\operatorname{Op}\left(\operatorname{Spec}\left(\mathscr{F}_{\kappa}\right)\right)$.

The spectrum of each Riesz space (ℓ-group) is a generalized spectral space, i.e. it is T_{0}, sober, the compact open subsets form a basis, and the intersection of two compact opens is compact.

Theorem (C., Lapenta, Spada)

$\mathcal{U}^{\kappa} \backslash\{O\}$ is a generalized spectral space.
$\mathscr{E}: \operatorname{Spec}\left(\mathscr{F}_{\kappa}\right) \rightarrow \mathcal{U}^{\kappa}$ can be thought of as a coordinatization of $\operatorname{Spec}\left(\mathscr{F}_{\kappa}\right)$ with coordinates in \mathcal{U}.

By the correspondence theorem, if $A \cong \mathscr{F}_{\kappa} / J$, then we can think of $\operatorname{Spec}(A)$ as a subspace of $\operatorname{Spec}\left(\mathscr{F}_{\kappa}\right)$. So, \mathscr{E} restricts to an embedding of $\operatorname{Spec}(A)$ into \mathcal{U}^{κ} whose image is $\mathscr{E}\left[\operatorname{Spec}\left(\mathscr{F}_{\kappa}\right)\right] \cap \mathrm{V}(J)$.

While the spectrum as a topological space is not sufficient to recover the original Riesz space, the coordinatization is enough:

```
Theorem (C., Lapenta, Spada)
A\cong\operatorname{Def}(\mathscr{E}[\operatorname{Spec}(A)]) for any Riesz space A.
```

An analogous result holds for ℓ-groups.
In part II we will see how $\mathscr{E}\left[\operatorname{Spec}\left(\mathscr{F}_{\kappa}\right)\right]$ looks like when κ is finite.

Definition

- Recall that an Riesz space (ℓ-group) is semisimple if the intersection of all its maximal ℓ-ideals is $\{0\}$.
- A Riesz space (ℓ-group) A is called Archimedean if for every $a, b \in A$, $a \leq 0$ whenever $n a \leq b$ for all $n \in \mathbb{N}$.
- Semisemplicity always implies Archimedeanity.
- Archimedeanity implies semisimplicity in the presence of a strong order-unit (e.g. in the finitely generated setting).

Theorem (C., Lapenta, Spada)

Let A be a Riesz space (ℓ-group) and $C \subseteq \mathcal{U}^{\kappa}$ its dual generalized closed cone (\mathbb{Z}-generalized closed cone).
A is semisimple iff $C=\operatorname{VI}\left(C \cap \mathbb{R}^{\kappa}\right)$, i.e. C is the closure of $C \cap \mathbb{R}^{\kappa}$ in \mathcal{U}^{κ}.
Note that $C \cap \mathbb{R}^{\kappa}$ is the closed cone in \mathbb{R}^{κ} corresponding to A under Baker-Beynon duality.

For any natural number n let $\pi_{n}: \mathcal{U}^{\omega} \rightarrow \mathcal{U}^{n+1}$ be the map that sends $\left(x_{i}\right)_{i \in \omega}$ to $\left(x_{0}, x_{1}, \ldots, x_{n}\right)$.

Theorem (C., Lapenta, Spada)

Let A be an ω-generated Riesz space (ℓ-group) and $C \subseteq \mathcal{U}^{\omega}$ its dual generalized closed cone (Z-generalized closed cone).
Then A is archimedean iff

$$
C=\bigcap_{n=0}^{\infty} \pi_{n}^{-1}\left[\mathrm{VI}\left(\mathrm{VI}\left(\pi_{n}[C]\right) \cap \mathbb{R}^{n+1}\right)\right]
$$

where the subsets $\pi_{n}^{-1}\left[\mathrm{VI}\left(\mathrm{VI}\left(\pi_{n}[C]\right) \cap \mathbb{R}^{n+1}\right)\right]$ form a decreasing sequence of generalized closed cones in \mathcal{U}^{ω}.

When $\kappa>\omega$, the decreasing sequence is substituted by a downdirected family of generalized closed cones in \mathcal{U}^{κ}.

Part II

Using non-standard tools

Recap of Part I

- We derived for any cardinal α a generalization of Baker-Beynon duality to the categories of all Riesz spaces and all ℓ-groups with less than α generators.
- The idea is to replace \mathbb{R} with a suitable ultrapower \mathcal{U}.
- κ-generated Riesz spaces correspond to generalized closed cones in \mathcal{U}^{κ}. Whereas, κ-generated ℓ-groups correspond to \mathbb{Z}-generalized closed cones in \mathcal{U}^{κ}.
- Every Riesz space (ℓ-group) can be represented as the algebra of definable (Z-definable) functions on its dual.
- \mathcal{U}^{κ} has naturally two topologies (one relative to Riesz spaces and one to ℓ-groups) whose nonempty closed are the generalized closed cones and the \mathbb{Z}-generalized closed cones. These topologies are strictly connected to the spectrum of the free algebra with the Zariski topology.
- Irreducible closed subsets (=closures of points) of $\mathcal{U}^{\kappa} \backslash\{O\}$ correspond to prime ideals of the free algebra.

For the rest of the talk we will assume $\alpha=\omega$.
Let also assume that \mathcal{U} is an ultrapower of \mathbb{R} defined as $\mathcal{U}=\mathbb{R}^{\mathbb{N}} / \mathcal{F}$ with \mathcal{F} a nonprincipal ultrafilter of $\mathcal{P}(\mathbb{N})$.

We have seen that \mathcal{U} induces dualities for finitely generated Riesz spaces and ℓ-groups.

Theorem

- The category of all finitely generated Riesz spaces is dually equivalent to the category of generalized closed cones in \mathcal{U}^{n} (with $n \in \mathbb{N}$).
- The category of all finitely generated ℓ-groups is dually equivalent to the category of \mathbb{Z}-generalized closed cones in \mathcal{U}^{n} (with $n \in \mathbb{N}$).

It follows from Łoś’s theorem that the algebraic structure of \mathbb{R} lifts to \mathcal{U} :

Proposition

- \mathcal{U} is a linearly ordered field.
- \mathcal{U}^{n} is a \mathcal{U}-vector space.

The elements of \mathcal{U} are equivalence classes $\left[\left(r_{i}\right)_{i \in \mathbb{N}}\right]$ of \mathbb{N}-indexed sequences $\left(r_{i}\right)_{i \in \mathbb{N}}$ of real numbers. Where

$$
\left(r_{i}\right)_{i \in \mathbb{N}} \sim\left(s_{i}\right)_{i \in \mathbb{N}} \quad \text { iff } \quad\left\{i \in \mathbb{N} \mid r_{i}=s_{i}\right\} \in \mathscr{F} .
$$

We identify each $r \in \mathbb{R}$ with $\left[\left(r_{i}\right)_{i \in \mathbb{N}}\right] \in \mathcal{U}$ such that $r_{i}=r$ for all $i \in \mathbb{N}$.

Proposition

- \mathbb{R} embeds into \mathcal{U} as a sub-lattice-ordered field.
- \mathcal{U}^{n} is an \mathbb{R}-vector space containing \mathbb{R}^{n} as a vector subspace.

We will identify \mathbb{R} and \mathbb{R}^{n} with their isomorphic copies in \mathcal{U} and \mathcal{U}^{n}.

Some notions from non-standard analysis

As it is common in non-standard analysis, we call the elements of \mathcal{U} hyperreal numbers. Among the hyperreal numbers we have:

- real numbers

$$
[(1,1,1, \ldots)], \quad\left[\left(\frac{15}{7}, \frac{15}{7}, \frac{15}{7}, \ldots\right)\right], \quad[(\pi, \pi, \pi, \ldots)], \ldots
$$

- infinitesimal numbers (absolute value smaller than any $0<r \in \mathbb{R}$)

$$
\left[\left(1, \frac{1}{2}, \frac{1}{3}, \ldots\right)\right], \quad\left[\left(1, \frac{1}{2^{2}}, \frac{1}{3^{2}}, \ldots\right)\right], \quad\left[\left(1, \frac{1}{2^{2}}, \frac{1}{2^{3}}, \ldots\right)\right], \ldots
$$

- unlimited numbers (absolute value greater than any $r \in \mathbb{R}$)

$$
[(1,2,3, \ldots)], \quad\left[\left(1,2^{2}, 3^{2}, \ldots\right)\right], \quad\left[\left(1,2^{2}, 2^{3}, \ldots\right)\right], \ldots
$$

- limited numbers (not limited, i.e. between $-r$ and r for some $r \in \mathbb{R}$)

$$
[(1,1,1, \ldots)], \quad\left[\left(1, \frac{1}{2}, \frac{1}{3}, \ldots\right)\right], \quad\left[\left(\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \ldots, 1-\frac{1}{n}, \ldots\right)\right], \ldots
$$

The operations behave like the limits in analysis:

- limited + limited $=$ limited, unlimited + limited $=$ unlimited, \ldots.
- limited \times limited $=$ limited, unlimited \times infinitesimal $=$?, \ldots.

Definition

- If $A \subseteq \mathbb{R}^{n}$, its enlargement ${ }^{*} A \subseteq \mathcal{U}^{n}$ is defined as follows:
$\left(\left[\left(r_{i}^{1}\right)\right], \ldots,\left[\left(r_{i}^{n}\right)\right]\right) \in{ }^{*} A$ if and only if $\left\{i \in \mathbb{N} \mid\left(r_{i}^{1}, \ldots, r_{i}^{n}\right) \in A\right\} \in \mathcal{F}$.
- If $A \subseteq \mathbb{R}^{n}$ and $f: A \rightarrow \mathbb{R}$, then the enlargement ${ }^{*} f:{ }^{*} A \rightarrow \mathcal{U}$ of f is given by

$$
{ }^{*} f\left(\left[\left(r_{i}^{1}\right)\right], \ldots,\left[\left(r_{i}^{n}\right)\right]\right):=\left[\left(f\left(r_{i}^{1}, \ldots, r_{i}^{n}\right)\right)\right] .
$$

Proposition

- $A \subseteq{ }^{*} A$.
- If A is finite, then $A={ }^{*} A$.
- If A is infinite, then ${ }^{*} A$ must contain some elements of \mathcal{U}^{n} outside \mathbb{R}^{n}.

For example, ${ }^{*} \mathbb{N}$ contains the unlimited element $[(1,2,3, \ldots)]$.

Let \mathscr{L} be a first-order language and $\left.\left(\mathbb{R},\left(P_{\alpha}\right),\left(f_{\alpha}\right)\right)\right)$ an \mathscr{L}-structure, where the P_{α} 's and f_{α} 's are the interpretations of the predicate and function symbols of \mathscr{L} in \mathbb{R}. Then $\left.\left(\mathcal{U},\left({ }^{*} P_{\alpha}\right),\left({ }^{*} f_{\alpha}\right)\right)\right)$ is also an \mathscr{L}-structure.

Theorem (Transfer principle)

Let φ be a first-order \mathscr{L}-sentence. Then φ is true in $\left(\mathbb{R},\left(P_{\alpha}\right),\left(f_{\alpha}\right)\right)$ if and only φ is true in $\left(\mathcal{U},\left({ }^{*} P_{\alpha}\right),\left({ }^{*} f_{\alpha}\right)\right)$.

In other words, a first-order condition holds in \mathbb{R} iff the condition obtained by replacing all the relations and functions with their enlargements holds in \mathcal{U}. (For simplicity of notation, we just write + instead of ${ }^{*}+$ and similarly for the other lattice-ordered field operations.)

This allows to transfer first-order properties of functions and subsets from \mathbb{R}^{n} to \mathcal{U}^{n} and back.

Let $S^{1}=\left\{(x, y) \in \mathbb{R}^{2} \mid x^{2}+y^{2}=1\right\}$ be the unit circle in \mathbb{R}^{2}.
Since

$$
\forall x, y\left((x, y) \in S^{1} \Leftrightarrow x^{2}+y^{2}=1\right)
$$

is a first-order condition that holds in \mathbb{R}, then

$$
\forall x, y\left((x, y) \in^{*}\left(S^{1}\right) \Leftrightarrow x^{2}+y^{2}=1\right)
$$

holds in \mathcal{U} by transfer. So, ${ }^{*}\left(S^{1}\right)=\left\{(x, y) \in \mathcal{U}^{2} \mid x^{2}+y^{2}=1\right\}$.
It is easy to get a geometric intuition of the enlargements of subsets of \mathbb{R}^{n} defined by first-order sentences.

If $0<\varepsilon \in \mathcal{U}$ is infinitesimal, then $x=\left(\frac{1}{\sqrt{1+\varepsilon^{2}}}, \frac{\varepsilon}{\sqrt{1+\varepsilon^{2}}}\right) \in{ }^{*}\left(S^{1}\right) \backslash S^{1}$.

If $0<\varepsilon \in \mathcal{U}$ is infinitesimal, then $x=\left(\frac{1}{\sqrt{1+\varepsilon^{2}}}, \frac{\varepsilon}{\sqrt{1+\varepsilon^{2}}}\right) \in{ }^{*}\left(S^{1}\right) \backslash S^{1}$.

If $0<\varepsilon \in \mathcal{U}$ is infinitesimal, then $x=\left(\frac{1}{\sqrt{1+\varepsilon^{2}}}, \frac{\varepsilon}{\sqrt{1+\varepsilon^{2}}}\right) \in{ }^{*}\left(S^{1}\right) \backslash S^{1}$.

If $0<\varepsilon \in \mathcal{U}$ is infinitesimal, then $x=\left(\frac{1}{\sqrt{1+\varepsilon^{2}}}, \frac{\varepsilon}{\sqrt{1+\varepsilon^{2}}}\right) \in{ }^{*}\left(S^{1}\right) \backslash S^{1}$.

If $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is a function, then the graph of ${ }^{*} f: \mathcal{U}^{n} \rightarrow \mathcal{U}$ is just the enlargement of the graph of f.

The enlargement of f can be used to compute limits. For example,

$$
\lim _{x \rightarrow 0} f(x)=0 \Leftrightarrow{ }^{*} f(x) \text { infinitesimal for all } x \text { infinitesimal. }
$$

Definable maps and piecewise linear functions

Let $g: \mathcal{U}^{n} \rightarrow \mathcal{U}$ be definable, i.e. there is a term t such that $g(x)=t(x)$ for all $x \in \mathcal{U}^{n}$.
If $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is the piecewise linear function defined by the same term, i.e. $f(x)=t(x)$ for all $x \in \mathbb{R}^{n}$, then the transfer principle yields

$$
\forall x \in \mathbb{R}^{n}(f(x)=t(x)) \quad \text { iff } \quad \forall x \in \mathcal{U}^{n}\left({ }^{*} f(x)=t(x)\right)
$$

Thus, $g={ }^{*} f$, and so g is the enlargement of a piecewise linear function.

Proposition

Let $C \subseteq \mathcal{U}^{n}$ be a generalized closed cone. Then $\operatorname{Def}(C)=\left\{\left({ }^{*} f\right)_{\mid C} \mid f: \mathbb{R}^{n} \rightarrow \mathbb{R}\right.$ piecewise linear $\}$.

$$
f: \mathbb{R}^{2} \rightarrow \mathbb{R}
$$

$$
{ }^{*} f: \mathcal{U}^{2} \rightarrow \mathcal{U}
$$

Definable functions naturally generalize piecewise linear functions.

Let $\mathbb{R} \overrightarrow{\times} \mathbb{R}$. Then its dual generalized closed cone is

$$
C=\left\{(x, y) \in \mathcal{U}^{2} \mid x>0, y \geq 0, \text { and } y / x \text { is infinitesimal }\right\} \cup\{(0,0)\}
$$

So,

$$
\begin{aligned}
\mathbb{R} \overrightarrow{\times} \mathbb{R} \cong \operatorname{Def}(C) & =\left\{\left({ }^{*} f\right)_{\mid C} \mid f: \mathbb{R}^{2} \rightarrow \mathbb{R} \text { piecewise linear }\right\} \\
& =\left\{\left({ }^{*} f\right)_{\mid C} \mid f: \mathbb{R}^{2} \rightarrow \mathbb{R} \text { linear }\right\} .
\end{aligned}
$$

Indexes and irreducible closed subsets

Recall from part I that f.g. linearly ordered Riesz spaces correspond to the irreducible closed subsets of \mathcal{U}^{n}, i.e. the closures of the points of \mathcal{U}^{n}.

We want to understand how these subsets of \mathcal{U}^{n} look like (for simplicity we only consider the case of Riesz spaces).

Theorem (Orthogonal decomposition)

If $x \in \mathcal{U}^{n}$, then $x=\alpha_{1} v_{1}+\cdots+\alpha_{k} v_{k}$ where $\alpha_{1}, \ldots, \alpha_{k} \in \mathcal{U}$ are positive, $\alpha_{i+1} / \alpha_{i}$ is infinitesimal for each $i<k$, and $v_{1}, \ldots, v_{k} \in \mathbb{R}^{n}$ are orthonormal vectors. Furthermore, this decomposition is unique.

Definition

- We call a finite sequence $\left(v_{1}, \ldots, v_{k}\right)$ of orthonormal vectors in \mathbb{R}^{n} an index.
- We denote by $\iota(x)$ the index $\left(v_{1}, \ldots, v_{k}\right)$ made of the vectors appearing in the orthogonal decomposition of $x \in \mathcal{U}^{n}$.
- Let \mathbf{v}, \mathbf{w} be two indexes. We write $\mathbf{v} \leq \mathbf{w}$ when \mathbf{v} is a truncation of \mathbf{w}, i.e. $\mathbf{v}=\left(v_{1}, \ldots, v_{h}\right)$ and $\mathbf{w}=\left(v_{1}, \ldots, v_{k}\right)$ for $h \leq k$.

Definition

If \mathbf{v} is an index, let Cone $(\mathbf{v}):=\left\{y \in \mathcal{U}^{n} \mid \iota(y) \leq \mathbf{v}\right\}$

Theorem (C., Lapenta, Spada)

The closure of x in \mathcal{U}^{n} is Cone $(\iota(x))$.
The proof uses the fact that if $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is a linear function and $x \in \mathcal{U}^{n}$ with $\iota(x)=\left(v_{1}, \ldots, v_{k}\right)$, then the sign of ${ }^{*} f(x)$ is determined by the real numbers $f\left(v_{1}\right), \ldots, f\left(v_{k}\right)$.

Corollary
If $x \in \mathcal{U}^{n}$, then

$$
\begin{aligned}
\operatorname{Def}(\operatorname{Cone}(\iota(x))) & \cong\left\{{ }^{*} f(x) \in \mathcal{U} \mid f: \mathbb{R}^{n} \rightarrow \mathbb{R} \text { piecewise linear }\right\} \\
& =\left\{{ }^{*} f(x) \in \mathcal{U} \mid f: \mathbb{R}^{n} \rightarrow \mathbb{R} \text { linear }\right\} .
\end{aligned}
$$

Let $x=(1,0) \in \mathcal{U}^{2}$. Then $\iota(x)=\left(v_{1}\right)$ with $v_{1}=(1,0)$. We have

$$
y \in \operatorname{Cone}(\iota(x)) \quad \text { iff } \quad y=\alpha_{1}(1,0) \text { with } 0 \leq \alpha_{1} \in \mathcal{U}
$$

Thus, the closure of x in \mathcal{U}^{2} is $\left\{\left(\alpha_{1}, 0\right) \mid 0 \leq \alpha_{1} \in \mathcal{U}\right\}$, which is the enlargement of the positive x-semiaxis.

The dual Riesz space is \mathbb{R}. Indeed,

$$
\operatorname{Def}(\operatorname{Cone}(\iota(x))) \cong\left\{{ }^{*} f(1,0) \mid f: \mathbb{R}^{2} \rightarrow \mathbb{R} \text { linear }\right\} \cong \mathbb{R}
$$

Let $\varepsilon \in \mathcal{U}$ be a positive infinitesimal and $x=(1, \varepsilon)$. Then

$$
x=1(1,0)+\varepsilon(0,1)
$$

is the orthogonal decomposition of x. Thus, $\iota(x)=\left(v_{1}, v_{2}\right)$ with $v_{1}=(1,0)$ and $v_{2}=(0,1)$. We have
$y \in \operatorname{Cone}(\iota(x))$ iff $y=O$, or

$$
\begin{aligned}
& y=\alpha_{1}(1,0) \text { (orthogonal decomposition), or } \\
& y=\alpha_{1}(1,0)+\alpha_{2}(0,1) \text { (orthogonal decomposition) }
\end{aligned}
$$

Then Cone $(\iota(x))$, i.e. the closure of x in \mathcal{U}^{2} is

$$
\left\{\left(\alpha_{1}, \alpha_{2}\right) \in \mathcal{U}^{2} \mid \alpha_{1}>0, \alpha_{2} \geq 0 \text { and } \alpha_{2} / \alpha_{1} \text { is infinitesimal }\right\} \cup\{O\} .
$$

The dual Riesz space is $\mathbb{R} \overrightarrow{\times}$. Indeed,

$$
\begin{aligned}
\operatorname{Def}(\operatorname{Cone}(\iota(x))) & \cong\left\{{ }^{*} f(1, \varepsilon) \mid f: \mathbb{R}^{n} \rightarrow \mathbb{R} \text { linear }\right\} \\
& =\{a+b \varepsilon \in \mathcal{U} \mid a, b \in \mathbb{R}\} \cong \mathbb{R} \overrightarrow{\times} \mathbb{R}
\end{aligned}
$$

Theorem (C., Lapenta, Spada)

The mapping Cone: v \mapsto Cone(v) induces an order-isomorphism between the set of indexes ordered by truncation and the set of irreducible closed subsets of \mathcal{U}^{n} ordered by inclusion.

Corollary

I ○ Cone: $\mathbf{v} \mapsto \mathrm{I}($ Cone(v)) induces an order-isomorphism between the set of nonempty indexes ordered by truncation and $\operatorname{Spec}\left(\mathscr{F}_{n}\right)$ ordered by reverse inclusion.

That nonempty indexes correspond to prime ideals of \mathscr{F}_{n} was proved by Panti (1999) using different techniques.

Embedding $\operatorname{Spec}\left(\mathscr{F}_{n}\right)$ into \mathcal{U}^{n}

Recall from part I: if we choose for each irreducible closed subset $C \subseteq \mathcal{U}^{n} \backslash\{O\}$ a point $x \in \mathcal{U}^{n}$ such that C is the closure of x, then we can define an embedding $\mathscr{E}: \operatorname{Spec}\left(\mathscr{F}_{n}\right) \rightarrow \mathcal{U}^{n}$.

Indexes allow us to choose x for every C in a canonical way. Fix a positive infinitesimal $\varepsilon \in \mathcal{U}$. If $C=\operatorname{Cone}(\mathbf{v})$ is an irreducible closed with $\mathbf{v}=\left(v_{1}, \ldots, v_{k}\right)$, then we pick $x \in \operatorname{Cone}(\mathbf{v})$ defined as

$$
x=v_{1}+\varepsilon v_{2}+\cdots+\varepsilon^{k-1} v_{k}
$$

Since $\mathbf{v}=\iota(x)$, we have that Cone (\mathbf{v}) is the closure of x.
Therefore, we obtain an embedding $\mathscr{E}: \operatorname{Spec}\left(\mathscr{F}_{n}\right) \rightarrow \mathcal{U}^{n}$ that maps a prime ideal $P=\mathrm{I}(\operatorname{Cone}(\mathbf{v}))$ to the point $v_{1}+\varepsilon \mathrm{v}_{2}+\cdots+\varepsilon^{k-1} v_{k}$.

$\operatorname{Spec}\left(\mathscr{F}_{1}\right)$

We have $\mathscr{E}\left[\operatorname{Spec}\left(\mathscr{F}_{1}\right)\right]=\{-1,1\} \subseteq \mathcal{U}$.

Note that $\operatorname{Spec}\left(\mathscr{F}_{1}\right)=\operatorname{MaxSpec}\left(\mathscr{F}_{1}\right)$.

$\operatorname{Spec}\left(\mathscr{F}_{2}\right)$

We have $\mathscr{E}\left[\operatorname{MaxSpec}\left(\mathscr{F}_{2}\right)\right]=S^{1} \subseteq \mathbb{R}^{2} \subseteq \mathcal{U}^{2}$.

$\operatorname{Spec}\left(\mathscr{F}_{2}\right)$

We have $\mathscr{E}\left[\operatorname{Spec}\left(\mathscr{F}_{2}\right)\right] \subseteq \mathcal{U}^{2}$ consists of points infinitesimally close to S^{1}.

$\operatorname{Spec}\left(\mathscr{F}_{2}\right)$

We have $\mathscr{E}\left[\operatorname{Spec}\left(\mathscr{F}_{2}\right)\right] \subseteq \mathcal{U}^{2}$ consists of points infinitesimally close to S^{1}.

$\operatorname{Spec}\left(\mathscr{F}_{2}\right)$

We have $\mathscr{E}\left[\operatorname{Spec}\left(\mathscr{F}_{2}\right)\right] \subseteq \mathcal{U}^{2}$ consists of points infinitesimally close to S^{1}.

$\operatorname{Spec}\left(\mathscr{F}_{2}\right)$

We have $\mathscr{E}\left[\operatorname{Spec}\left(\mathscr{F}_{2}\right)\right] \subseteq \mathcal{U}^{2}$ consists of points infinitesimally close to S^{1}.

$\operatorname{Spec}\left(\mathscr{F}_{3}\right)$

We have $\mathscr{E}\left[\operatorname{MaxSpec}\left(\mathscr{F}_{3}\right)\right]=S^{2} \subseteq \mathbb{R}^{3} \subseteq \mathcal{U}^{3}$.

$\operatorname{Spec}\left(\mathscr{F}_{3}\right)$

We have $\mathscr{E}\left[\operatorname{Spec}\left(\mathscr{F}_{3}\right)\right] \subseteq \mathcal{U}^{3}$ consists of points infinitesimally close to S^{2}.

$\operatorname{Spec}\left(\mathscr{F}_{3}\right)$

We have $\mathscr{E}\left[\operatorname{Spec}\left(\mathscr{F}_{3}\right)\right] \subseteq \mathcal{U}^{3}$ consists of points infinitesimally close to S^{2}.

$\operatorname{Spec}\left(\mathscr{F}_{3}\right)$

We have $\mathscr{E}\left[\operatorname{Spec}\left(\mathscr{F}_{3}\right)\right] \subseteq \mathcal{U}^{3}$ consists of points infinitesimally close to S^{2}.

Characterization of prime ideals in \mathscr{F}_{n}

We have seen that IoCone induces an order-isomorphism between indexes and prime ideals of \mathscr{F}_{n}. Recall that $\mathscr{F}_{n} \cong \operatorname{PWL}\left(\mathbb{R}^{n}\right)$
$\mathrm{I}(\operatorname{Cone}(\mathbf{v}))$ correspond to the prime ideal of $\operatorname{PWL}\left(\mathbb{R}^{n}\right)$ given by

$$
\left\{f \in \operatorname{PWL}\left(\mathbb{R}^{n}\right) \mid{ }^{*} f \text { vanishes on Cone }(\mathbf{v})\right\}
$$

Is there a way to avoid mentioning the enlargement?

Definition

Let $\mathbf{v}=\left(v_{1}, \ldots, v_{k}\right)$ be an index. We say that a closed cone $C \subseteq \mathbb{R}^{n}$ is a \mathbf{v}-cone if there exist real numbers $0<r_{1}, \ldots, r_{k} \in \mathbb{R}$ such that C is the positive span of

$$
\left\{r_{1} v_{1}, \quad r_{1} v_{1}+r_{2} v_{2}, \quad \ldots \quad r_{1} v_{1}+\cdots+r_{k} v_{k}\right\}
$$

Theorem (C., Lapenta, Spada)

Cone(\mathbf{v}) is the intersection of the enlargements of all \mathbf{v}-cones.

Let $\mathbf{v}=\left(v_{1}, v_{2}\right)$ with $v_{1}=(1,0)$ and $v_{2}=(0,1)$.

Let $\mathbf{v}=\left(v_{1}, v_{2}\right)$ with $v_{1}=(1,0)$ and $v_{2}=(0,1)$.

$\bigcap\{C \mid C$ is a v-cone $\}$ is the positive x-semiaxis.

Let $\mathbf{v}=\left(v_{1}, v_{2}\right)$ with $v_{1}=(1,0)$ and $v_{2}=(0,1)$.

\mathcal{U}^{2}

Let $\mathbf{v}=\left(v_{1}, v_{2}\right)$ with $v_{1}=(1,0)$ and $v_{2}=(0,1)$.

Let $\mathbf{v}=\left(v_{1}, v_{2}\right)$ with $v_{1}=(1,0)$ and $v_{2}=(0,1)$.

\mathcal{U}^{2}

Let $\mathbf{v}=\left(v_{1}, v_{2}\right)$ with $v_{1}=(1,0)$ and $v_{2}=(0,1)$.

\mathcal{U}^{2}

Let $\mathbf{v}=\left(v_{1}, v_{2}\right)$ with $v_{1}=(1,0)$ and $v_{2}=(0,1)$.

$\bigcap\left\{{ }^{*} C \mid C\right.$ is a v-cone $\}=$ Cone (\mathbf{v}).

Theorem (C., Lapenta, Spada)
*f vanishes on Cone(v) iff f vanishes on a v-cone.

Proof sketch.

- By transfer, if f vanishes on a v-cone C, then ${ }^{*} f$ vanishes on ${ }^{*} C$. So, ${ }^{*} f$ vanishes on Cone(v) because Cone $(\mathbf{v}) \subseteq{ }^{*} C$.

Theorem (C., Lapenta, Spada)

* f vanishes on Cone(v) iff f vanishes on a v-cone.

Proof sketch.

- By transfer, if f vanishes on a v-cone C, then ${ }^{*} f$ vanishes on ${ }^{*} C$. So, ${ }^{*} f$ vanishes on Cone(v) because Cone(v) $\subseteq{ }^{*} C$.
- If * f vanishes on $\operatorname{Cone}(\mathbf{v})$, then there are $0<\alpha_{1}, \ldots, \alpha_{k} \in \mathcal{U}$ such that the positive span S of $\left\{\alpha_{1} v_{1}, \ldots, \alpha_{1} v_{1}+\cdots+\alpha_{k} v_{k}\right\}$, is contained in Cone(v).

Theorem (C., Lapenta, Spada)

*f vanishes on Cone(v) iff f vanishes on a v-cone.

Proof sketch.

- By transfer, if f vanishes on a v-cone C, then ${ }^{*} f$ vanishes on ${ }^{*} C$. So, ${ }^{*} f$ vanishes on Cone(v) because Cone(v) $\subseteq{ }^{*} C$.
- If *f vanishes on Cone (\mathbf{v}), then there are $0<\alpha_{1}, \ldots, \alpha_{k} \in \mathcal{U}$ such that the positive span S of $\left\{\alpha_{1} v_{1}, \ldots, \alpha_{1} v_{1}+\cdots+\alpha_{k} v_{k}\right\}$, is contained in Cone(v).
- Thus, ${ }^{*} f$ vanishes on S. By the transfer principle, there are $0<r_{1}, \ldots, r_{k} \in \mathbb{R}$ such that f vanishes on the positive span of $\left\{r_{1} v_{1}\right.$, $\left.\ldots, r_{1} v_{1}+\cdots+r_{k} v_{k}\right\}$, which is a v-cone.

We obtain the characterization of prime ideals of \mathscr{F}_{n} due to Panti (1999).

Corollary

$\mathbf{I}($ Cone $(\mathbf{v}))=\left\{f \in \operatorname{PWL}\left(\mathbb{R}^{n}\right) \mid f\right.$ vanishes on a \mathbf{v}-cone $\}$.

Future work

- Extend Marra-Spada duality for semisimple MV-algebras and Riesz MV-algebras beyond semisimplicity:
- $\mathcal{U} \rightarrow{ }^{*}[0,1]$.
- Indexes: $\left(v_{1}, \ldots, v_{k}\right) \rightarrow\left(x_{0}, v_{1}, \ldots, v_{k}\right)$.
- Irreducible closed subsets: "infinitesimally wide cones" \rightarrow "infinitesimal simplexes".
- Describe dually the equivalence between MV-algebras and ℓ-groups with strong order-unit.
- Describe dually the equivalence between perfect MV-algebras and ℓ-groups.
- Generalize the non-standard techniques and the indexes to the infinitely generated case.
- Use the duality to characterize the free Riesz spaces over ℓ-groups.

THANK YOU!

Theorem

Let $\alpha \leq 2^{\omega}$ be a cardinal. There exists an ultrapower \mathcal{U} of \mathbb{R} such that every linearly ordered Riesz space an ℓ-groups of cardinality less than α embeds \mathcal{U}.

Proof.

- All nontrivial linearly ordered Riesz spaces are elementarily equivalent: their theory has quantifier elimination, and hence it is model complete. Since \mathbb{R} embeds into every non-trivial Riesz space, the theory of linearly ordered Riesz Spaces is complete because it is model complete and has an algebraically prime model.
- By a model-theoretic fact any α-regular ultrapower \mathcal{U} of \mathbb{R} is such that all linearly ordered groups of cardinality less or equal to α embed into \mathcal{U}.
- Since $\alpha \leq 2^{\omega}$ (the cardinality of the language of Riesz spaces), another model theoretic fact tells us that every ℓ-group of cardinality less than α embeds into \mathcal{U}.

Definition (Panti (1999))

- We call a subspace of \mathbb{R}^{n} rational if it admits a basis made of vectors from \mathbb{Q}^{n}.
- If $S \subseteq \mathbb{R}^{n}$, then its rational envelope $\langle S\rangle$ denotes the smallest rational subspace of \mathbb{R}^{n} containing S
- We say that an index $\mathbf{v}=\left(v_{1}, \ldots, v_{k}\right)$ is \mathbb{Z}-reduced if $v_{i} \in\left\langle v_{j}\right\rangle^{\perp}$ for any $i \neq j$.

Given an index \mathbf{v} there is a canonical way to associate a \mathbb{Z}-reduced index red(v).

Theorem (C., Lapenta, Spada)

- The closure of x in \mathcal{U}^{n} with the topology of the \mathbb{Z}-generalized closed cones is $\bigcup\{$ Cone $(\mathbf{v}) \mid \operatorname{red}(\mathbf{v}) \leq \operatorname{red}(\iota(x))\}$.
- There is an order isomorphism between \mathbb{Z}-reduced indexes and irreducible closed subsets of \mathcal{U}^{n} with the topology of the Z-generalized closed cones.

Definition

Let A be a Riesz space (ℓ-group) and $0<a \in A$.

- a is a strong order-unit if for each $b \in A$ there exists $n \in \mathbb{N}$ such that $b \leq n a$.
- a is a weak order-unit of A if $a \wedge|b|=0$ implies $b=0$ for each $b \in A$.

Theorem

Let A be a nontrivial Riesz space (ℓ-group) and $C \subseteq \mathcal{U}^{\kappa}$ its dual generalized closed cone (\mathbb{Z}-generalized closed cone).

- A has a strong order-unit iff $C \backslash\{O\}$ is compact.
- A has a weak order-unit iff $C \backslash\{O\}$ contains a dense compact open subset.

Let A, B be two Riesz spaces dual to the generalized closed cones $C \subseteq U^{\kappa}$ and $D \subseteq \mathcal{U}^{\mu}$.

Theorem

- The coproduct $A \oplus B$ is dual to $C \times D$.
- The product $A \times B$ is dual to $(C \times\{O\}) \cup(\{O\} \times D)$.
- The lexicographic product $\mathbb{R} \overrightarrow{\times} B$ is dual to

$$
\{(x, y) \in \mathcal{U} \times D \mid 0<x, y / x \text { has all infinitesimal coordinates }\} \cup\{O\}
$$

