Dualities for abelian ℓ -groups and vector lattices beyond archimedeanity

Luca Carai, University of Salerno

joint work with S. Lapenta and L. Spada

AMS Spring Western Sectional Meeting, Algebraic Logic session May 14, 2022

Abelian ℓ -groups and vector lattices

Definition

- An abelian ℓ-group is an abelian group A equipped with a lattice order such that a ≤ b implies a + c ≤ b + c for every a, b, c ∈ A.
- A vector lattice is an abelian ℓ-group V equipped with a structure of ℝ-vector space such that 0 ≤ r and 0 ≤ v imply rv ≥ 0 for each r ∈ ℝ and v ∈ V.

Abelian ℓ -groups and vector lattices form varieties.

ℓ -ideals

Definition

- An *l*-ideal in an abelian *l*-group is a subgroup *I* that is convex, i.e. |*a*| ≤ |*b*| and *b* ∈ *I* imply *a* ∈ *I*.
- An *l*-ideal in a vector lattice is a vector subspace that is convex.

Definition

An abelian ℓ -group/vector lattice is semisimple if the intersection of all its maximal ℓ -ideals is $\{0\}$.

It is archimedean if $na \leq b$ for every $n \in \mathbb{N}$ implies $a \leq 0$.

Semisimple \Rightarrow archimedean Archimedean \Rightarrow semisimple (if finitely generated)

Baker-Beynon duality

Piecewise linear functions

Definition

A continuous function $f : \mathbb{R}^{\kappa} \to \mathbb{R}$ is piecewise linear if there exist g_1, \ldots, g_n linear homogeneous polynomials in the variables $(x_{\alpha})_{\alpha < \kappa}$ such that for each $x \in \mathbb{R}^{\kappa}$ we have $f(x) = g_i(x)$ for some $i = 1, \ldots, n$.

Piecewise linear functions

Definition

A continuous function $f : \mathbb{R}^{\kappa} \to \mathbb{R}$ is piecewise linear if there exist g_1, \ldots, g_n linear homogeneous polynomials in the variables $(x_{\alpha})_{\alpha < \kappa}$ such that for each $x \in \mathbb{R}^{\kappa}$ we have $f(x) = g_i(x)$ for some $i = 1, \ldots, n$.

Piecewise linear functions

- The set PWL_ℝ(ℝ^κ) of piecewise linear functions on ℝ^κ is a vector lattice with pointwise operations.
- The set PWL_Z(ℝ^κ) of piecewise linear functions on ℝ^κ such that g₁,..., g_n have integer coefficients is an abelian ℓ-group with pointwise operations.

Theorem

- PWL_R(R^κ) is iso to the free vector lattice on κ generators.
- $PWL_{\mathbb{Z}}(\mathbb{R}^{\kappa})$ is iso to the free abelian ℓ -group on κ generators.

If $X \subseteq \mathbb{R}^{\kappa}$, we denote by $PWL_{\mathbb{R}}(X)$ and $PWL_{\mathbb{Z}}(X)$ the sets of piecewise linear maps restricted to X.

Definition

A subset of \mathbb{R}^{κ} is a cone if it is closed under multiplication by nonnegative scalars.

Theorem (Baker 1968)

- Every κ-generated semisimple vector lattice is isomorphic to PWL_R(C) where C is a cone that is closed in ℝ^κ.
- Every κ-generated semisimple abelian ℓ-group is isomorphic to PWL_Z(C) where C is a cone that is closed in ℝ^κ.

 $\mathsf{PWL}_{\mathbb{R}}$ and $\mathsf{PWL}_{\mathbb{Z}}$ can be extended to contravariant functors. They yield the Baker-Beynon duality.

Theorem (Beynon 1974)

- The category of semisimple vector lattices is dually equivalent to the category of closed cones in ℝ^κ and piecewise linear maps with real coefficients.
- The category of semisimple abelian *l*-groups is dually equivalent to the category of closed cones in ℝ^κ and piecewise linear maps with integer coefficients.

Beyond Baker-Beynon duality

Key ingredient for Baker-Beynon

Any semisimple abelian ℓ -group/vector lattice is a subdirect product of subalgebras of \mathbb{R} .

We need an analogous fact without the semisimplicity assumption. However, we are forced to put a bound on the cardinality of the set of generators.

Theorem

Let γ be a cardinal. There exists an ultrapower \mathcal{U} of \mathbb{R} such that for any $\kappa \leq \gamma$ any κ -generated abelian ℓ -group/vector lattice is a subdirect product of subalgebras of \mathcal{U} .

 \mathcal{U} and \mathbb{R} are elementary equivalent but \mathcal{U} contains infinitesimals and infinite elements. Moreover, \mathcal{U} contains a copy of \mathbb{R} .

Extending piecewise linear maps and Zariski topologies on \mathcal{U}^{κ}

We can extend every piecewise linear $f : \mathbb{R}^{\kappa} \to \mathbb{R}$ to ${}^*f : \mathcal{U}^{\kappa} \to \mathcal{U}$ which is called the enlargement of f.

We define:

* $\mathsf{PWL}_{\mathbb{R}}(\mathcal{U}^{\kappa}) = \{*f \mid f \in \mathsf{PWL}_{\mathbb{R}}(\mathbb{R}^{\kappa})\},\$ * $\mathsf{PWL}_{\mathbb{Z}}(\mathcal{U}^{\kappa}) = \{*f \mid f \in \mathsf{PWL}_{\mathbb{Z}}(\mathbb{R}^{\kappa})\}.$

If $X \subseteq \mathcal{U}^{\kappa}$, we can consider the restriction of **f* to *X*. We denote the corresponding sets by *PWL_R(*X*) and *PWL_Z(*X*).

The closed cones in \mathbb{R}^{κ} are the closed subsets of the topology generated by the zerosets of the maps in $PWL_{\mathbb{R}}(\mathbb{R}^{\kappa})$, or equivalently $PWL_{\mathbb{Z}}(\mathbb{R}^{\kappa})$.

We consider the topologies on \mathcal{U}^{κ} generated by the zerosets of the maps in $PWL_{\mathbb{R}}(\mathcal{U}^{\kappa})$ and $PWL_{\mathbb{Z}}(\mathcal{U}^{\kappa})$. These two topologies do not coincide. We call them Zariski topologies.

Duality

By applying the general affine duality approach of Caramello, Marra, and Spada (2021) we obtain a duality.

Theorem (C., Lapenta, and Spada)

Let γ be a cardinal. There exists an ultrapower \mathcal{U} of \mathbb{R} such that:

- The category of κ-generated vector lattices for some κ ≤ γ is dually equivalent to the category of Zariski closed subsets of U^κ for some κ ≤ γ.
- The category of κ-generated abelian ℓ-groups for some κ ≤ γ is dually equivalent to the category of Zariski closed subsets of U^κ for some κ ≤ γ.

Thus, every vector lattice (resp. abelian ℓ -group) is isomorphic to *PWL_R(*C*) (resp. *PWL_Z(*C*)) for some Zariski closed subset $C \subseteq \mathcal{U}^{\kappa}$.

\mathcal{F}_{κ}	\mathbb{R}^{κ}	\mathcal{U}^{κ}
maximal ℓ -ideals	half-lines	closure of standard points
	from the origin	(except the origin)
		= half-lines from the origin
		through a standard point
intersections of	closed cones	closure of standard subsets
maximal ℓ -ideals		
prime ℓ -ideals		irreducible closed subsets
		= closure of points
ℓ -ideals		closed subsets

The maximal spectrum MaxSpec(A) of a semisimple vector lattice/abelian ℓ -group A can be embedded into its dual closed cone in \mathbb{R}^{κ} .

If we identify MaxSpec(A) with its image, $A \cong PWL_{\mathbb{R}}(MaxSpec(A))$ or $A \cong PWL_{\mathbb{Z}}(MaxSpec(A))$.

Similarly, the spectrum Spec(A) of a vector lattice/abelian ℓ -group can be embedded into its dual Zariski closed subset of \mathcal{U}^{κ}

If we identify Spec(A) with its image, $A \cong {}^{*}PWL_{\mathbb{R}}(Spec(A))$ or $A \cong {}^{*}PWL_{\mathbb{Z}}(Spec(A))$.

Irreducible closed subsets of \mathcal{U}^n (vector lattices)

Irreducible closed subsets of \mathcal{U}^n

Orthogonal decomposition theorem (Goze 1995)

If $x \in \mathcal{U}^n$, then x can be written in a unique way as $\alpha_1 v_1 + \cdots + \alpha_k v_k$ with v_1, \ldots, v_k orthonormal vectors of \mathbb{R}^n and $0 < \alpha_1, \ldots, \alpha_k \in \mathcal{U}$ such that α_{i+1}/α_i is infinitesimal.

Thus, we can associate to each $x \in U^n$ the sequence $\mathbf{v} = (v_1, \dots, v_k)$ of orthonormal vectors. We call such sequences indices.

Definition

Let $Cone(\mathbf{v})$ be the set of points of \mathcal{U}^n whose index is a truncation of \mathbf{v} .

Theorem (C., Lapenta, Spada)

In the Zariski topology of \mathcal{U}^n relative to vector lattices each irreducible closed of \mathcal{U}^n is $Cone(\mathbf{v})$ for some index \mathbf{v} .

$$\mathbf{v} = ((1, 0), (0, 1)).$$

Let **v** be an index. A polyhedral cone *C* of \mathbb{R}^n is a **v**-cone if there are real numbers $r_2, \ldots, r_k > 0$ such that the edges of *C* are given by $v_1, v_1 + r_2v_2, \ldots, v_1 + r_2v_2 + \cdots + r_kv_k$.

By transfer principle (Łoś's Theorem) we obtain

Theorem (C., Lapenta, and Spada)

If $f \in PWL_{\mathbb{R}}(\mathbb{R}^n)$, then *f vanishes on Cone(**v**) iff f vanishes on some **v**-cone.

As a corollary, we obtain

Theorem (Panti 1999)

Each prime ℓ -ideal of the vector lattice \mathscr{F}_n is of the form $\{f \in \mathsf{PWL}_{\mathbb{R}}(\mathbb{R}^n) \mid f \text{ vanishes on a } \mathbf{v}\text{-cone}\}$ for some index \mathbf{v} .

Dualities for MV-algebras and Riesz MV-algebras beyond archimedeanity

Theorem (C., Lapenta, and Spada)

Let γ be a cardinal. There exists an ultrapower \mathcal{U} of [0, 1] such that:

- The category of κ-generated MV-algebras for some κ ≤ γ is dually equivalent to the category of Zariski closed subsets of U^κ for some κ ≤ γ.
- The category of κ-generated Riesz MV-algebras for some κ ≤ γ is dually equivalent to the category of Zariski closed subsets of U^κ for some κ ≤ γ.

The irreducible closed in \mathcal{U}^n are "infinitesimal simplices".

This is an affine version of the dualities for abelian $\ell\text{-}\mathsf{groups}$ and vector lattices.

THANK YOU!