Baker-Beynon duality beyond semisimplicity

Luca Carai, University of Milan

Joint work with: S. Lapenta and L. Spada

Tolo VII 24 June 2025 Baker-Beynon duality

Definition

A Riesz space V is an \mathbb{R} -vector space equipped with a lattice structure such that for every $u, v, w \in V$ and $0 \le r \in \mathbb{R}$:

• if $u \le v$, then $u + w \le v + w$ and $ru \le rv$.

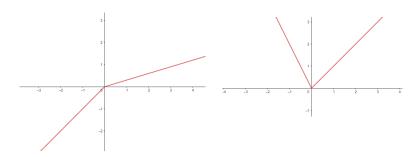
A map between Riesz spaces is a Riesz space homomorphism if it is a linear map and a lattice homomorphism.

Riesz spaces form a variety.

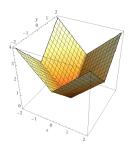
Examples of Riesz spaces

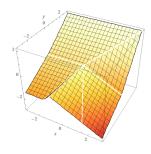
- R
- \bullet \mathbb{R}^X for a set X
- $\mathbb{R} \overrightarrow{\times} \mathbb{R}$ (lexicographic product)
- $C(X, \mathbb{R})$ for a topological space X

A continuous function $f: \mathbb{R}^{\kappa} \to \mathbb{R}$ is piecewise linear (homogeneous) if there exist $g_1, \ldots, g_n \colon \mathbb{R}^{\kappa} \to \mathbb{R}$ linear homogeneous functions (each in finitely many variables) such that for each $x \in \mathbb{R}^{\kappa}$ we have $f(x) = g_i(x)$ for some $i = 1, \ldots, n$.



A continuous function $f: \mathbb{R}^{\kappa} \to \mathbb{R}$ is piecewise linear (homogeneous) if there exist $g_1, \ldots, g_n \colon \mathbb{R}^{\kappa} \to \mathbb{R}$ linear homogeneous functions (each in finitely many variables) such that for each $x \in \mathbb{R}^{\kappa}$ we have $f(x) = g_i(x)$ for some $i = 1, \ldots, n$.





The piecewise linear functions $f: \mathbb{R}^{\kappa} \to \mathbb{R}$ form a Riesz space that we denote by $PWL(\mathbb{R}^{\kappa})$.

Theorem (Baker 1968)

Let κ be a cardinal. The free Riesz space on κ generators is isomorphic to $PWL(\mathbb{R}^{\kappa})$. The free generators correspond to the projection maps onto each coordinate.

If $X \subseteq \mathbb{R}^{\kappa}$, we let $PWL(X) := \{f|_X \text{ with } f \in PWL(\mathbb{R}^{\kappa})\}.$

Which Riesz spaces are isomorphic to PWL(X) for some $X \subseteq \mathbb{R}^{\kappa}$?

Definition

An ℓ -ideal in a Riesz space is a subgroup (linear subspace) I that is convex, i.e. $|a| \le |b|$ and $b \in I$ imply $a \in I$.

Definition

- A nontrivial Riesz space A is simple if $\{0\}$ and A are the only ℓ -ideals of A.
- A Riesz space is semisimple if the intersection of all its maximal ℓ-ideals is {0}.

Proposition

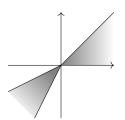
- A Riesz space is simple iff it is isomorphic to \mathbb{R} .
- A Riesz space is semisimple iff it can be (subdirectly) embedded into a power of \mathbb{R} .
- PWL(X) is semisimple for any $X \subseteq \mathbb{R}^{\kappa}$.

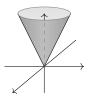
Theorem (Baker 1968)

Every semisimple Riesz space is isomorphic to PWL(C) for some closed cone $C \subseteq \mathbb{R}^{\kappa}$.

Definition

A nonempty subset $C \subseteq \mathbb{R}^{\kappa}$ is a closed cone if it is closed under multiplication by nonnegative scalars and it is topologically closed in \mathbb{R}^{κ} with the euclidean topology.





This representation result extends to Baker-Beynon duality.

Let \mathscr{F}_{κ} be the free Riesz space over κ generators.

For any $T\subseteq \mathscr{F}_{\kappa}$ and $S\subseteq \mathbb{R}^{\kappa}$, we define the following operators.

$$V(T) = \{x \in \mathbb{R}^{\kappa} \mid t(x) = 0 \text{ for all } [t] \in T\}$$
$$I(S) = \{[t] \in \mathscr{F}_{\kappa} \mid t(x) = 0 \text{ for all } x \in S\}.$$

Galois connection

$$T \subseteq I(S)$$
 iff $S \subseteq V(T)$.

- The fixpoints of VI are the closed cones of \mathbb{R}^{κ} .
- The fixpoints of IV are the ℓ -ideals of \mathscr{F}_{κ} that are intersections of maximal ℓ -ideals.

Proposition

V and I form a dual isomorphism between the poset of ℓ -ideals of \mathscr{F}_{κ} that are intersections of maximal ℓ -ideals and the poset of closed cones in \mathbb{R}^{κ} .

Theorem (Beynon 1974)

The category of semisimple Riesz spaces and Riesz space homomorphisms is dually equivalent to the category of closed cones in \mathbb{R}^{κ} and piecewise linear maps between them.

On objects:

Let A be a semisimple Riesz space, then $A\cong \mathscr{F}_\kappa/J$, where J is an intersection of maximal ℓ -ideals of \mathscr{F}_κ . Then map

$$A \mapsto V(J)$$
,

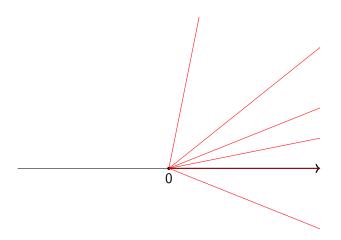
which is a closed cone in \mathbb{R}^{κ} .

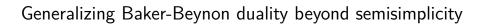
Let C be a closed cone in \mathbb{R}^{κ} . Then map

$$C \mapsto PWL(C)$$
,

which is semisimple and isomorphic to $\mathscr{F}_{\kappa}/I(C)$.

 \mathbb{R} (as a Riesz space) is dual to the semiline $\{x \in \mathbb{R} \mid x \geq 0\}$. Indeed, $\mathbb{R} \cong \mathsf{PWL}(\{x \in \mathbb{R} \mid x \geq 0\})$. $\mathscr{F}_2 / \langle (x - y) \land y \land 0 \rangle$ is dual to $\{(x,y) \in \mathbb{R}^2 \mid 0 \leq y \leq x\}$.





In the definition of the operators

$$V(T) = \{x \in \mathbb{R}^{\kappa} \mid t(x) = 0 \text{ for all } [t] \in T\} \text{ with } T \subseteq \mathscr{F}_{\kappa}$$
$$I(S) = \{[t] \in \mathscr{F}_{\kappa} \mid t(x) = 0 \text{ for all } x \in S\} \text{ with } S \subseteq \mathbb{R}^{\kappa}$$

we can replace $\mathbb R$ with any Riesz space A and still get a Galois connection. In the definition of the operators

$$V(T) = \{x \in A^{\kappa} \mid t(x) = 0 \text{ for all } [t] \in T\} \text{ with } T \subseteq \mathscr{F}_{\kappa}$$
$$I(S) = \{[t] \in \mathscr{F}_{\kappa} \mid t(x) = 0 \text{ for all } x \in S\} \text{ with } S \subseteq A^{\kappa}$$

we can replace \mathbb{R} with any Riesz space A and still get a Galois connection.

Caramello, Marra, and Spada (2021) observed that this can be done for any variety of algebras by replacing \mathbb{R} with any algebra in that variety. They also show that this approach also works in a more categorical setting.

Our goal is to replace $\mathbb R$ with a Riesz space that guarantees more ℓ -ideals of $\mathscr F_\kappa$ to be fixpoints of IV.

It is not possible to obtain a Riesz space A such that for any κ the fixpoints of IV are all the ℓ -ideals of \mathscr{F}_{κ} .

Definition

An ℓ -ideal I is prime if $a \land b \in I$ implies $a \in I$ or $b \in I$.

Theorem

- A/I is linearly ordered iff I is prime.
- Every ℓ -ideal is an intersection of prime ℓ -ideals.
- Every Riesz space is subdirect product of linearly ordered ones.

Theorem (C., Lapenta, Spada)

Let α be a cardinal. There exists an ultrapower $\mathcal U$ of $\mathbb R$ in which all κ -generated (with $\kappa < \alpha$) linearly ordered Riesz spaces embed.

In particular, when $\alpha=\omega$ we can take $\mathcal U$ to be any ultrapower of $\mathbb R$ over a nonprincipal ultrafilter of a countably infinite set.

Fix a cardinal α and an ultrapower $\mathcal U$ of $\mathbb R$ in which all κ -generated with $\kappa<\alpha$ linearly ordered Riesz spaces embed. κ will denote an arbitrary cardinal smaller than α .

We consider the operators:

$$\begin{split} \mathsf{V}(T) = & \{x \in \mathcal{U}^\kappa \mid t(x) = 0 \text{ for all } [t] \in T \} \text{ with } T \subseteq \mathscr{F}_\kappa \\ \mathsf{I}(S) = & \{[t] \in \mathscr{F}_\kappa \mid t(x) = 0 \text{ for all } x \in S \} \text{ with } S \subseteq \mathcal{U}^\kappa. \end{split}$$

Galois connection

$$T \subseteq I(S)$$
 iff $S \subseteq V(T)$.

- The fixpoints of IV are exactly the ℓ -ideals of \mathscr{F}_{κ} .
- We call $S \subseteq \mathcal{U}^{\kappa}$ such that S = VI(S) a generalized closed cone.

Proposition

V and I establish a dual isomorphism between the poset of ℓ -ideals of \mathscr{F}_{κ} and the poset of generalized closed cones in \mathcal{U}^{κ} .

Definition

- We say that a map $\mathcal{U}^{\kappa} \to \mathcal{U}^{\mu}$ is definable if its components are defined by terms in the language of Riesz spaces.
- If $X \subseteq \mathcal{U}^{\kappa}$, we denote by $\mathsf{Def}(X)$ the set of definable maps $f \colon X \to \mathcal{U}$.

Theorem (C., Lapenta, Spada)

The category of Riesz spaces with less than α generators and Riesz space homomorphisms is dually equivalent to the category of generalized closed cones in \mathcal{U}^{κ} for some $\kappa < \alpha$ and definable maps.

On objects:

Let A be a κ -generated Riesz space, so $A \cong \mathscr{F}_{\kappa}/J$. Then map

$$A \mapsto V(J),$$

which is a generalized closed cone in \mathcal{U}^{κ} .

Let C be a generalized closed cone in \mathcal{U}^{κ} . Then map

$$C \mapsto \mathsf{Def}(C)$$
.

which is isomorphic to $\mathscr{F}_{\kappa}/\mathsf{I}(C)$.

Consequences and applications

Proposition

- The generalized closed cones in \mathcal{U}^{κ} (together with \varnothing) form the closed of a topology on \mathcal{U}^{κ} . The closure of a nonempty $X \subseteq \mathcal{U}^{\kappa}$ is V I(X).
- \mathbb{R}^{κ} is a subset of \mathcal{U}^{κ} and the closed subsets of \mathbb{R}^{κ} with the subspace topology are exactly the closed cones (and \varnothing).

${\mathscr F}_{\kappa}$	\mathbb{R}^{κ} (Baker-Beynon)	\mathcal{U}^{κ} (gen. Baker-Beynon)
maximal ℓ-ideals	half-lines	closures of points of \mathbb{R}^{κ}
	from the origin	(except the origin)
intersections of	closed cones	closures of nonempty
maximal ℓ-ideals		subsets of \mathbb{R}^{κ}
prime ℓ-ideals		irreducible closed subsets
		$=$ closures of points of \mathcal{U}^{κ}
		(except the origin)
ℓ -ideals		generalized closed cones

Definition

- Recall that a Riesz space is semisimple if the intersection of all its maximal ℓ -ideals is $\{0\}$.
- A Riesz space A is called archimedean if for every $a, b \in A$, we have that $na \leq b$ for all $n \in \mathbb{N}$ implies $a \leq 0$.
- Semisemplicity always implies archimedeanity.
- Archimedeanity implies semisimplicity in the presence of a strong order-unit (e.g., in the finitely generated setting).

Theorem

Let A be a Riesz space and $C \subseteq \mathcal{U}^{\kappa}$ its dual generalized closed cone. A is semisimple iff $C = \mathsf{VI}(C \cap \mathbb{R}^{\kappa})$, i.e. C is the closure of $C \cap \mathbb{R}^{\kappa}$ in \mathcal{U}^{κ} .

Note that $C \cap \mathbb{R}^{\kappa}$ is the closed cone in \mathbb{R}^{κ} corresponding to A under Baker-Beynon duality.

For any natural number $n \geq 1$ let $\pi_n \colon \mathcal{U}^\omega \to \mathcal{U}^n$ be the map that sends $(x_i)_{i \in \omega}$ to (x_1, \dots, x_n) .

Theorem

Let A be an ω -generated Riesz space and $C \subseteq \mathcal{U}^{\omega}$ its dual generalized closed cone.

Then A is archimedean iff

$$C = \bigcap_{n=1}^{\infty} \pi_n^{-1} [\mathsf{VI}(\mathsf{VI}(\pi_n[C]) \cap \mathbb{R}^n)],$$

where the subsets $\pi_n^{-1}[V | (V | (\pi_n[C]) \cap \mathbb{R}^n)]$ form a decreasing sequence of generalized closed cones in \mathcal{U}^{ω} .

When $\kappa > \omega$, the decreasing sequence must be replaced by a downdirected family of generalized closed cones in \mathcal{U}^{κ} .

Embedding $\operatorname{Spec}(\mathscr{F}_\kappa)$ into \mathcal{U}^κ

If A is a Riesz space, then $\operatorname{Spec}(A) = \{ \operatorname{prime} \ell \text{-ideals of } A \}$ is called the spectrum of A. It is naturally equipped with the Zariski topology generated by the closed subsets $\{ P \in \operatorname{Spec}(A) \mid a \in P \}$, where a ranges in A.

If P is a prime ℓ -ideal of \mathscr{F}_{κ} , then V(P) is the closure of a point of \mathcal{U}^{κ} . For each prime ℓ -ideal P choose one such point and denote it by $\mathscr{E}(P)$.

Theorem

- ullet \mathscr{E} : Spec $(\mathscr{F}_{\kappa}) o \mathcal{U}^{\kappa}$ is a topological embedding.
- The posets of the open subsets of $\operatorname{Spec}(\mathscr{F}_{\kappa})$ and of $\mathcal{U}^{\kappa}\setminus\{O\}$ are isomorphic.

 $\mathscr{E} \colon \operatorname{Spec}(\mathscr{F}_{\kappa}) \to \mathcal{U}^{\kappa}$ can be thought of as a coordinatization of $\operatorname{Spec}(\mathscr{F}_{\kappa})$ with coordinates in \mathcal{U} .

- By the correspondence theorem, if $A \cong \mathscr{F}_{\kappa}/J$, then we can think of $\operatorname{Spec}(A)$ as a subspace of $\operatorname{Spec}(\mathscr{F}_{\kappa})$.
- \mathscr{E} restricts to an embedding of $\operatorname{Spec}(A)$ into \mathcal{U}^{κ} whose image is $\mathscr{E}[\operatorname{Spec}(\mathscr{F}_{\kappa})] \cap \mathsf{V}(J)$.

While the spectrum as a topological space is not sufficient to recover the original Riesz space, the coordinatization is enough:

Theorem

 $A \cong \mathsf{Def}(\mathscr{E}[\mathsf{Spec}(A)])$ for any Riesz space A.

 ${\cal U}$ as the non-standard line

Let $\alpha = \omega$ and assume that \mathcal{U} is an ultrapower of \mathbb{R} defined as $\mathcal{U} = \mathbb{R}^{\mathbb{N}}/\mathcal{F}$ with \mathcal{F} a nonprincipal ultrafilter of $\mathcal{P}(\mathbb{N})$.

We can think of $\mathcal U$ as a non-standard line. $\mathcal U$ is a linearly ordered field containing (a copy of) $\mathbb R$. The elements of $\mathcal U$ are called hyperreal numbers.

- $x \in \mathcal{U}$ is infinitesimal if $|x| \le r$ for every $0 < r \in \mathbb{R}$.
- $x \in \mathcal{U}$ is unlimited if $|x| \ge r$ for every $0 < r \in \mathbb{R}$.

Working with an ultrapower allows us to define the enlargement ${}^*A \subseteq \mathcal{U}^n$ of a subset $A \subseteq \mathbb{R}^n$, as well as the enlargement ${}^*f : \mathcal{U}^n \to \mathcal{U}$ of a function $f : \mathbb{R}^n \to \mathbb{R}$.

Theorem (Transfer principle)

Let φ be a first-order sentence. Then φ is true in $\mathbb R$ iff ${}^*\varphi$ is true in $\mathcal U$.

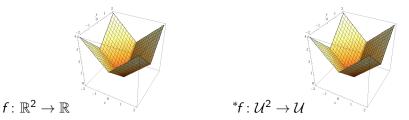
- $A \subseteq {}^*A$.
- If A is finite, then $A = {}^*A$.
- *Q contains both nonzero infinitesimal and unlimited numbers.

Let $g: \mathcal{U}^n \to \mathcal{U}$ be definable, i.e. there is a term t such that g(x) = t(x) for all $x \in \mathcal{U}^n$. If $f: \mathbb{R}^n \to \mathbb{R}$ is the piecewise linear function defined by the same term, then $g = {}^*f$.

Proposition

Let $C \subseteq \mathcal{U}^n$ be a generalized closed cone. Then $Def(C) = \{(^*f)_{|C} \mid f : \mathbb{R}^n \to \mathbb{R} \text{ piecewise linear}\}.$

The graph of *f: $\mathcal{U}^n \to \mathcal{U}$ is just the enlargement of the graph of f.



Definable functions naturally generalize piecewise linear functions.

Let $\mathbb{R} \overrightarrow{\times} \mathbb{R}$. Then its dual generalized closed cone is

$$C = \{(x,y) \in \mathcal{U}^2 \mid x > 0, y \ge 0, \text{ and } y/x \text{ is infinitesimal}\} \cup \{(0,0)\}.$$

So,

$$\mathbb{R} \overrightarrow{\times} \mathbb{R} \cong \mathsf{Def}(C) = \{(^*f)_{|C} \mid f \colon \mathbb{R}^2 \to \mathbb{R} \text{ piecewise linear}\}$$
$$= \{(^*f)_{|C} \mid f \colon \mathbb{R}^2 \to \mathbb{R} \text{ linear}\}.$$

Indexes and prime ideals

We have seen that prime ℓ -ideals of \mathscr{F}_n correspond to the closures of the points of \mathcal{U}^n .

We want to understand how these subsets of \mathcal{U}^n look like.

Theorem (Orthogonal decomposition)

If $x \in \mathcal{U}^n$, then $x = \alpha_1 v_1 + \cdots + \alpha_k v_k$ where $\alpha_1, \ldots, \alpha_k \in \mathcal{U}$ are positive, α_{i+1}/α_i is infinitesimal for each i < k, and $v_1, \ldots, v_k \in \mathbb{R}^n$ are orthonormal vectors. Furthermore, this decomposition is unique.

Definition

- We call a finite sequence (v_1, \ldots, v_k) of orthonormal vectors in \mathbb{R}^n an index.
- We denote by $\iota(x)$ the index (v_1, \ldots, v_k) made of the vectors appearing in the orthogonal decomposition of $x \in \mathcal{U}^n$.
- Let \mathbf{v} , \mathbf{w} be two indexes. We write $\mathbf{v} \leq \mathbf{w}$ when \mathbf{v} is a truncation of \mathbf{w} , i.e. $\mathbf{v} = (v_1, \dots, v_h)$ and $\mathbf{w} = (v_1, \dots, v_k)$ for $h \leq k$.

Definition

If **v** is an index, let $Cone(\mathbf{v}) := \{ y \in \mathcal{U}^n \mid \iota(y) \leq \mathbf{v} \}.$

Theorem

The closure of x in \mathcal{U}^n is $Cone(\iota(x))$.

Theorem,

I \circ Cone: $\mathbf{v} \mapsto \mathsf{I}(\mathsf{Cone}(\mathbf{v}))$ induces an order-isomorphism between the set of indexes ordered by truncation and $\mathsf{Spec}(\mathscr{F}_n)$ ordered by reverse inclusion.

If $\mathbf{v} = (v_1, \dots, v_k)$ is an index, then we call a subset of \mathbb{R}^n a \mathbf{v} -cone if it is the positive span of $\{\sum_{i=1}^h r_i v_i \mid h \leq k\}$ for some $0 < r_1, \dots, r_k \in \mathbb{R}$.

Theorem

 $Cone(\mathbf{v})$ is the intersection of the enlargements of all the \mathbf{v} -cones.

Corollary (Panti 1999)

Every prime ℓ -ideal of PWL(\mathbb{R}^n) is of the form

$$\{f \in \mathsf{PWL}(\mathbb{R}^n) \mid f \text{ vanishes on some } \mathbf{v}\text{-cone}\}$$

for some index v.

Main idea of the proof: Let $f \in PWL(\mathbb{R}^n)$. By the transfer principle, *f vanishes on Cone(\mathbf{v}) iff f vanishes on some \mathbf{v} -cone.

Recall: if we map $P \in \operatorname{Spec}(\mathscr{F}_n)$ to a point $x \in \mathcal{U}^n$ such that V(P) is the closure of x, then we get an embedding $\mathscr{E} \colon \operatorname{Spec}(\mathscr{F}_n) \to \mathcal{U}^n$.

Indexes allow us to choose x for every P in a canonical way (modulo fixing a positive infinitesimal $\varepsilon \in \mathcal{U}$).

If $P \in \text{Spec}(\mathscr{F}_n)$, then there is a unique index $\mathbf{v} = (v_1, \dots, v_k)$ such that $V(P) = \text{Cone}(\mathbf{v})$. Define

$$\mathscr{E}(P) := v_1 + \varepsilon v_2 + \cdots + \varepsilon^{k-1} v_k.$$

If P is a maximal ℓ -ideal, then the corresponding index consists of a single vector $\mathbf{v} = (v_1)$. Therefore, $\mathscr{E}(P) \in \mathbb{R}^n$.

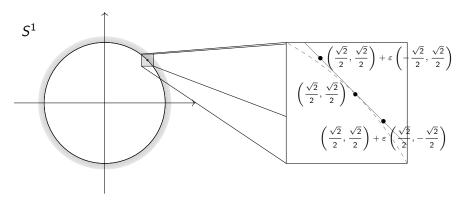
$Spec(\mathscr{F}_1)$

We have $\mathscr{E}[\operatorname{Spec}(\mathscr{F}_1)] = \{-1,1\} \subseteq \mathcal{U}$.

Note that $Spec(\mathscr{F}_1) = MaxSpec(\mathscr{F}_1)$.

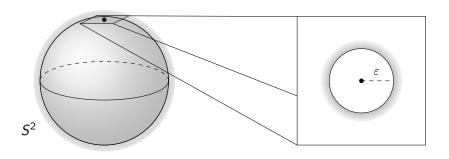
$Spec(\mathcal{F}_2)$

We have $\mathscr{E}[\mathtt{MaxSpec}(\mathscr{F}_2)] = S^1 \subseteq \mathbb{R}^2 \subseteq \mathcal{U}^2$. We have $\mathscr{E}[\mathtt{Spec}(\mathscr{F}_2)] \subseteq \mathcal{U}^2 \text{ consists of points infinitesimally close to } S^1.$



$Spec(\mathscr{F}_3)$

We have $\mathscr{E}[\mathtt{MaxSpec}(\mathscr{F}_3)] = S^2 \subseteq \mathbb{R}^3 \subseteq \mathcal{U}^3$. We have $\mathscr{E}[\mathtt{Spec}(\mathscr{F}_3)] \subseteq \mathcal{U}^3$ consists of points infinitesimally close to S^2 .



Future work

- Extending Marra-Spada duality for semisimple MV-algebras and Riesz MV-algebras beyond semisimplicity:
 - \bullet \mathcal{U} \rightarrow *[0,1].
 - Indexes: $(v_1, \ldots, v_k) \rightarrow (x_0, v_1, \ldots, v_k)$.
 - Irreducible closed subsets:
 "infinitesimally wide cones" → "infinitesimal simplexes".
 - Describe dually the equivalence between MV-algebras and ℓ -groups with strong order-unit.
 - Describe dually the equivalence between perfect MV-algebras and $\ell\text{-groups}.$
- Generalize the non-standard techniques and the indexes to the infinitely generated case.

მადლობა

(Thank you)