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Definition

A Riesz space V is an R-vector space equipped with a lattice structure
such that for every u,v,w € Vand 0 < r € R:

e ifu<v,thenu+w<v+wandru<rv.

A map between Riesz spaces is a Riesz space homomorphism if it is a
linear map and a lattice homomorphism.

Riesz spaces form a variety.

Examples of Riesz spaces
o R
o RX for a set X
o RXR (lexicographic product)

e C(X,R) for a topological space X
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A continuous function f: R® — R is piecewise linear (homogeneous) if
there exist g1,...,gn: R® — R linear homogeneous functions (each in
finitely many variables) such that for each x € R* we have f(x) = gi(x)
forsomei=1,...,n.
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A continuous function f: R® — R is piecewise linear (homogeneous) if
there exist g1,...,gn: R® — R linear homogeneous functions (each in
finitely many variables) such that for each x € R* we have f(x) = gi(x)
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The piecewise linear functions f: R® — R form a Riesz space that we
denote by PWL(RR").
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Theorem (Baker 1968)

Let k be a cardinal. The free Riesz space on k generators is isomorphic to
PWL(R"). The free generators correspond to the projection maps onto
each coordinate.

If X C R", we let PWL(X) == {f|x with f € PWL(R®)}.

Which Riesz spaces are isomorphic to PWL(X) for some X C R*? |
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Definition

An /-ideal in a Riesz space is a subgroup (linear subspace) / that is
convex, i.e. |a| <|b| and b € | imply a € I.

Definition

@ A nontrivial Riesz space A is simple if {0} and A are the only ¢-ideals
of A.

@ A Riesz space is semisimple if the intersection of all its maximal
(-ideals is {0}.

Proposition

@ A Riesz space is simple iff it is isomorphic to R.

o A Riesz space is semisimple iff it can be (subdirectly) embedded into
a power of R.

e PWL(X) is semisimple for any X C R".




Theorem (Baker 1968)

Every semisimple Riesz space is isomorphic to PWL(C) for some closed
cone C C R".

.

Definition

A nonempty subset C C R” is a closed cone if it is closed under
multiplication by nonnegative scalars and it is topologically closed in R*
with the euclidean topology.

.

This representation result extends to Baker-Beynon duality.
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Let %, be the free Riesz space over k generators.
For any T C %, and S C R*, we define the following operators.

V(T) ={x e R" | t(x) =0 forall [t] e T}
I(S) ={[t] € Z#. | t(x) =0 for all x € S}.

Galois connection

TCI(S) iff SCV(T).

@ The fixpoints of VI are the closed cones of R*.

@ The fixpoints of |V are the f-ideals of .%,; that are intersections of
maximal /-ideals.

Proposition

V and | form a dual isomorphism between the poset of (-ideals of %, that
are intersections of maximal {-ideals and the poset of closed cones in R*.
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Theorem (Beynon 1974)

The category of semisimple Riesz spaces and Riesz space homomorphisms
is dually equivalent to the category of closed cones in R* and piecewise
linear maps between them.

On objects:

Let A be a semisimple Riesz space, then A= %, /J, where J is an
intersection of maximal /-ideals of .%,. Then map

A V(J),

which is a closed cone in R”.

Let C be a closed cone in R”. Then map
C — PWL(C),

which is semisimple and isomorphic to .%, / I(C).
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R (as a Riesz space) is dual to the semiline {x € R | x > 0}.

Indeed, R=PWL({x e R|x >0}). F2/{(x—y)AyAO0)isdual to
{(x,y) eR*|0 <y <x}.
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Generalizing Baker-Beynon duality beyond semisimplicity

8/28



In the definition of the operators
V(T)={x e R"| t(x) =0forall [t] € T} with T C %,
I(S) ={[t] € Z#, | t(x) =0 for all x € S} with S C R"

we can replace R with any Riesz space A and still get a Galois connection.
In the definition of the operators

V(T) ={x € A% | t(x) =0 for all [t] € T} with T C .%,
I(S) ={[t] € #. | t(x) =0 for all x € S} with S C A"
we can replace R with any Riesz space A and still get a Galois connection.

Caramello, Marra, and Spada (2021) observed that this can be done for
any variety of algebras by replacing R with any algebra in that variety.
They also show that this approach also works in a more categorical
setting.

Our goal is to replace R with a Riesz space that guarantees more /-ideals
of .7, to be fixpoints of | V.

It is not possible to obtain a Riesz space A such that for any k the
fixpoints of 1V are all the /-ideals of .% .
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Definition
An /(-ideal [ is prime if aA b € | impliesa€ [ or b € |.

o A/l is linearly ordered iff | is prime.

o Every l-ideal is an intersection of prime {-ideals.

o Every Riesz space is subdirect product of linearly ordered ones.

Theorem (C., Lapenta, Spada)

Let a be a cardinal. There exists an ultrapower U of R in which all
k-generated (with k < «) linearly ordered Riesz spaces embed.

In particular, when o = w we can take U to be any ultrapower of R over a
nonprincipal ultrafilter of a countably infinite set.
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Fix a cardinal a and an ultrapower U/ of R in which all k-generated with
k < « linearly ordered Riesz spaces embed. x will denote an arbitrary

cardinal smaller than «.
We consider the operators:

V(T) ={x cU"| t(x)=0forall [t] € T} with T C .Z,
I(S) ={[t] € #« | t(x) =0 for all x € S} with S CU".

Galois connection

TCI(S) iff SCV(T).

@ The fixpoints of |V are exactly the ¢-ideals of .% .
o We call S CU" such that S = VI(S) a generalized closed cone.

Proposition
V and | establish a dual isomorphism between the poset of {-ideals of .7
and the poset of generalized closed cones in U" .
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Definition

o We say that a map U™ — U* is definable if its components are
defined by terms in the language of Riesz spaces.

e If X CU", we denote by Def(X) the set of definable maps 7: X — U.

Theorem (C., Lapenta, Spada)

The category of Riesz spaces with less than o generators and Riesz space
homomorphisms is dually equivalent to the category of generalized closed
cones in U" for some k < « and definable maps.

On objects:
Let A be a k-generated Riesz space, so A= %, /J. Then map

A V(J),
which is a generalized closed cone in U".
Let C be a generalized closed cone in U”. Then map

C + Def(C),

which is isomorphic to .%; / I(C). 12728



Consequences and applications
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Proposition

@ The generalized closed cones in U" (together with &) form the closed
of a topology on U". The closure of a nonempty X C U" is V I(X).

o R" js a subset of U* and the closed subsets of R* with the subspace
topology are exactly the closed cones (and @ ).

F

‘ R* (Baker-Beynon) ‘ U" (gen. Baker-Beynon)

|

maximal /-ideals

half-lines
from the origin

closures of points of R”
(except the origin)

intersections of
maximal ¢-ideals

closed cones

closures of nonempty
subsets of R”

prime {-ideals

irreducible closed subsets
= closures of points of U"
(except the origin)

f-ideals

generalized closed cones
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Definition
@ Recall that a Riesz space is semisimple if the intersection of all its
maximal /¢-ideals is {0}.

@ A Riesz space A is called archimedean if for every a, b € A, we have
that na < b for all n € N implies a < 0.

@ Semisemplicity always implies archimedeanity.

@ Archimedeanity implies semisimplicity in the presence of a strong
order-unit (e.g., in the finitely generated setting).

Let A be a Riesz space and C C U" its dual generalized closed cone.
A is semisimple iff C =V I(C NR"), i.e. C is the closure of C NR" in U".

Note that C N R" is the closed cone in R* corresponding to A under
Baker-Beynon duality.
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For any natural number n > 1 let w,: U* — U" be the map that sends

(Xi)icw to (x1,. .., Xn).

Let A be an w-generated Riesz space and C C U* its dual generalized

closed cone.
Then A is archimedean iff

C— () m VIV I(rLC) AR
n=1

where the subsets 7, [V I(V I(m,[C]) NR™)] form a decreasing sequence of
generalized closed cones in U“.

When x > w, the decreasing sequence must be replaced by a downdirected
family of generalized closed cones in U/*.
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Embedding Spec(.% ) into U"
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If Ais a Riesz space, then Spec(A) = {prime (-ideals of A} is called the
spectrum of A. It is naturally equipped with the Zariski topology generated
by the closed subsets {P € Spec(A) | a € P}, where a ranges in A.

If P is a prime (-ideal of %, then V(P) is the closure of a point of U".
For each prime (-ideal P choose one such point and denote it by &(P).

e &: Spec(Z,) — U" is a topological embedding.
@ The posets of the open subsets of Spec(.% ) and of U" \ {O} are
isomorphic.
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&: Spec(F,) — U" can be thought of as a coordinatization of
Spec(.# ) with coordinates in U.

@ By the correspondence theorem, if A= %, /J, then we can think of
Spec(A) as a subspace of Spec(.% ).

@ & restricts to an embedding of Spec(A) into U" whose image is
&[spec(F ) NV(J).

While the spectrum as a topological space is not sufficient to recover the
original Riesz space, the coordinatization is enough:

A =2 Def(&[Spec(A)]) for any Riesz space A.
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U as the non-standard line
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Let o = w and assume that U/ is an ultrapower of R defined as &/ = RY/F
with F a nonprincipal ultrafilter of P(N).

We can think of ¢/ as a non-standard line. U is a linearly ordered field
containing (a copy of) R. The elements of U are called hyperreal
numbers.

e x € U is infinitesimal if |x| < r for every 0 < r € R.
e x € U is unlimited if |x| > r for every 0 < r € R.

Working with an ultrapower allows us to define the enlargement *A C U"
of a subset A C R”, as well as the enlargement *f: U" — U of a function
f: R" — R.

Theorem (Transfer principle)

Let ¢ be a first-order sentence. Then ¢ is true in R iff “p is true in U.

e AC™A
o If A is finite, then A = *A.

@ *QQ contains both nonzero infinitesimal and unlimited numbers.

18/28



Let g: U" — U be definable, i.e. there is a term t such that g(x) = t(x)
forall x e U". If f: R" — R is the piecewise linear function defined by the
same term, then g = *f.

Proposition
Let C CU" be a generalized closed cone. Then
Def(C) = {(*f)|c | f: R" — R piecewise linear}.

The graph of *f: U" — U is just the enlargement of the graph of f.

fRZ-R U —-U
Definable functions naturally generalize piecewise linear functions.
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Let RXR. Then its dual generalized closed cone is

C={(x,y) eU?| x>0, y >0, and y/x is infinitesimal} U {(0,0)}.

So,

RXR = Def(C) = {(*f)ic | f: R? — R piecewise linear}
={(F)ic|f: R? — R linear}.
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Indexes and prime ideals
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We have seen that prime /-ideals of .%,, correspond to the closures of the
points of U/".

We want to understand how these subsets of /" look like.

Theorem (Orthogonal decomposition)

If x eUU", then x = aiyvy + - - - + ag vk where aa,...,ax € U are positive,
ajt1/a;j is infinitesimal for each i < k, and vi,...,vx € R" are
orthonormal vectors. Furthermore, this decomposition is unique.

Definition

e We call a finite sequence (vi, ..., vk) of orthonormal vectors in R"” an
index.

@ We denote by ¢(x) the index (vi,..., vx) made of the vectors
appearing in the orthogonal decomposition of x € U".

@ Let v, w be two indexes. We write v < w when v is a truncation of w,
ie. v=(v1,...,vp) and w = (vq,...,v) for h < k.

21/28



Definition
If v is an index, let Cone(v) = {y e U" | v(y) < v}.

The closure of x in U" is Cone(¢(x)).

| o Cone: v — I(Cone(v)) induces an order-isomorphism between the set of
indexes ordered by truncation and Spec(.% ) ordered by reverse inclusion.
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If v=(v1,...,vk) is an index, then we call a subset of R” a v-cone if it is
the positive span of {1, riv; | h < k} for some 0 < r1,...,r € R.

Cone(v) is the intersection of the enlargements of all the v-cones.

Corollary (Panti 1999)

Every prime (-ideal of PWL(IR") is of the form
{f € PWL(R") | f vanishes on some v-cone}

for some index v.

Main idea of the proof: Let f € PWL(R"). By the transfer principle, *f
vanishes on Cone(v) iff f vanishes on some v-cone.
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Recall: if we map P € Spec(.%,,) to a point x € U" such that V(P) is the
closure of x, then we get an embedding & : Spec(.#,) — U".

Indexes allow us to choose x for every P in a canonical way (modulo fixing
a positive infinitesimal ¢ € ).

If P € Spec(.%,), then there is a unique index v = (v1, ..., vk) such that
V(P) = Cone(v). Define

EP)=vi+evg+ -+ ty.

If P is a maximal ¢-ideal, then the corresponding index consists of a single
vector v = (vy). Therefore, &(P) € R".
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Spec(#1)

We have &[Spec(.#1)] = {-1,1} CU.

[ ]

Note that Spec(.#1) = MaxSpec(.%1).
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Spec(.#>)

We have &[MaxSpec(.%2)] = St C R?2 CU?. We have

&[Spec(-F2)] C U? consists of points infinitesimally close to S.

51
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Spec(.#3)

We have &[MaxSpec(F3)] = S CR3 CU3. We have

&[Spec(F3)] C U3 consists of points infinitesimally close to S2.
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@ Extending Marra-Spada duality for semisimple MV-algebras and Riesz
MV-algebras beyond semisimplicity:

o — T[0,1].
o Indexes: (vi,...,vk) — (X0, Va,.-., Vk).
o Irreducible closed subsets:
“infinitesimally wide cones” —  “infinitesimal simplexes”.

o Describe dually the equivalence between MV-algebras and ¢-groups
with strong order-unit.
e Describe dually the equivalence between perfect MV-algebras and
{-groups.
@ Generalize the non-standard techniques and the indexes to the
infinitely generated case.
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