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Heyting algebras provide the algebraic semantics for the intuitionistic
propositional calculus IPC.

Definition
A Heyting algebra H is a distributive lattice equipped with a binary
operation → satisfying

a ∧ b ≤ c iff a ≤ b → c

for any a, b, c ∈ H.
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Gödel algebras provide the algebraic semantics for the propositional
Gödel-Dummett logic LC, which is obtained by adding the prelinearity
axiom (p → q) ∨ (q → p) to IPC.

Definition
A Heyting algebra G is called a Gödel algebra if (a→ b)∨ (b → a) = 1 for
any a, b ∈ G .

We can think of LC as the extension of IPC in which “the truth values are
linearly ordered”. The variety of Gödel algebras is generated by the class of
all (finite) Heyting chains.

LC is also the logic of [0, 1] as a Heyting chain, and hence it can also be
thought of as a fuzzy logic. In fact, LC is the t-norm fuzzy logic associated
to the minimum t-norm.
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A Gödel algebra F is said to be free over a set X if there exists a map
f : X → F such that for any Gödel algebra G and map g : X → G , there is
a unique Heyting homomorphism h : F → G with g = h ◦ f .

F G

X

∃! h

f g

Free Gödel algebras arise as Lindenbaum-Tarski algebras for LC:

Let Form(X ) be the set of formulas with variables from a set X and define
φ ∼ ψ iff ⊢LC φ↔ ψ. Then Form(X )/∼ is a Gödel algebra free over X .
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Free Gödel algebra over 1-generator

⊥

p ¬p

¬¬p p ∨ ¬p

⊤
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Free Gödel algebra over 2-generators

× × ×

It has 342 elements.
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Definition
An Esakia root system is a Stone space X with a partial order ≤ such
that:

if x ∈ X , then ↑x is closed and a chain;
if V ⊆ X is clopen, then ↓V is clopen.

Esakia root systems Gödel algebras

X −→ ClopUp(X )
Spec(G) ←− G

Theorem (Esakia duality for Gödel algebras)
The category of Gödel algebras and Heyting homomorphisms is dually
equivalent to the category of Esakia root systems and continuous
p-morphisms.
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Dual of the free Gödel algebra over 1 generator

Dual of the free Gödel algebra over 2 generators

7 / 18



Proposition (Grigolia 1980s)
The dual of the free Gödel algebra over n generators is isomorphic to the
set of all nonempty chains in P({1, . . . , n}) ordered by

C ≤ D iff D is an upset of C .
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Proposition (Grigolia 1980s)
The dual of the free Gödel algebra over n generators is isomorphic to the
set of all nonempty chains in P({1, . . . , n}) ordered by

C ≤ D iff D is an upset of C .

P

Which Gödel algebra is dual to what we get when we replace
P({1, . . . , n}) with an arbitrary finite poset P?
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A Gödel algebra F is said to be free over a distributive lattice L if there
exists a lattice homomorphism f : L→ F such that for any Gödel algebra
G and lattice homomorphism g : L→ G , there is a unique Heyting algebra
homomorphism h : F → G with g = h ◦ f .

F G

L

∃! h

f g

Theorem (Aguzzoli, Gerla, and Marra 2008)
Let L be a finite distributive lattice and P a poset such that L ∼= Up(P).
The poset of all nonempty chains in P is the Esakia dual of the Gödel
algebra free over L.
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How to generalize this result to
infinite distributive lattices?
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Definition
A Priestley space is a Stone space X with a partial order ≤ such that

x ≰ y implies there is U clopen upset such that x ∈ U and y /∈ U.

Priestley spaces Distributive lattices

X −→ ClopUp(X )
Spec(L) ←− L

Theorem (Priestley duality 1972)
The category of distributive lattices and lattice homomorphisms is dually
equivalent to the category of Priestley spaces and continuous
order-preserving maps.
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Definition
If X is a Priestley space, we define

CC(X ) := {C ⊆ X | C is a nonempty closed chain}.

We order CC(X ) by setting C ≤ D iff D is an upset of C .

We topologize CC(X ) with the Vietoris topology, which is generated by
the subbasis consisting of the sets □V and ♢V for any V clopen of X :

□V = {C ∈ CC(X ) | C ⊆ V },
♢V = {C ∈ CC(X ) | C ∩ V ̸= ∅}.

Theorem (C. 2024)
If X is a Priestley space, then CC(X ) is an Esakia root system.
Let L be a distributive lattice and X its Priestley dual. Then the
Gödel algebra free over L is dual to the Esakia root system CC(X ).
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0 1 2

∞

X

{0} {1} {2}

{∞}

{∞, 0} {∞, 1} {∞, 2}

CC(X)

0 1 2

∞

X

{0}{1}{2}{∞}

{0, ∞}{1, ∞}{2, ∞}

CC(X)
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Let 2 be the 2-element chain with the discrete topology. If S is a set, we
consider 2S with the product topology and the product order.

Proposition
2S is a Priestley space dual to the distributive lattice free over S.

Corollary (C. 2024)
The Gödel algebra free over a set S is dual to the Esakia root system
CC(2S).
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Ghilardi in 1992 showed that finitely generated free Heyting algebras are
bi-Heyting algebras.

Definition
Let L be a distributive lattice.

L is a co-Heyting algebra if its order dual is a Heyting algebra.
L is a bi-Heyting algebra if it is both a Heyting and a co-Heyting
algebra.

We can characterize when a Gödel algebra free over a distributive lattice is
a bi-Heyting algebra.

Theorem (C. 2024)
Let F be the Gödel algebra free over a distributive lattice L.
Then F a bi-Heyting algebra iff L is a co-Heyting algebra.

Since free distributive lattices are co-Heyting algebras:

Corollary (C. 2024)
Free Gödel algebras are bi-Heyting algebras.
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Coproducts of Gödel algebras
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Coproducts of Heyting algebras (dually, products of Esakia spaces) are
complicated. Already the coproduct of the 3-element Heyting chain with
itself is infinite.

Coproducts of Gödel algebras (dually, products of Esakia root systems) are
simpler. D’Antona and Marra in 2006 dually described binary coproducts
of finite Gödel algebras, which are always finite.

The following are the coproduct of the 3-element Heyting chain with itself
in the category of Gödel algebras and its dual.
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Let {Xi} be a family of Esakia root systems. We denote by
∏

i Xi their
cartesian product with the product topology and the product order.

Definition
Let

⊗
i Xi be the subspace of CC

( ∏
i Xi

)
given by⊗

iXi := {C ∈ CC
(∏

iXi
)
| πi [C ] is an upset of Xi for each i ∈ I}.

π1 π2
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Let {Xi} be a family of Esakia root systems. We denote by
∏

i Xi their
cartesian product with the product topology and the product order.

Definition
Let

⊗
i Xi be the subspace of CC

( ∏
i Xi

)
given by⊗

iXi := {C ∈ CC
(∏

iXi
)
| πi [C ] is an upset of Xi for each i ∈ I}.

Theorem (C. 2024)
If {Xi} is a family of Esakia root systems, then

⊗
i Xi is their product

in the category of Esakia root systems.
Let {Gi} be a family of Gödel algebras and {Xi} their dual Esakia
root systems. Then

⊕
i Gi is dual to

⊗
i Xi .

17 / 18



Free algebras in varieties of Gödel algebras



The proper subvarieties of the variety of Gödel algebras form a countable
chain GA0 ⊆ GA1 ⊆ · · · ⊆ GAn ⊆ . . . , where each GAn consists of the
Gödel algebras validating the bounded depth n axiom bdn:

bd0 := ⊥ bdn+1 := xn+1 ∨ (xn+1 → bdn)

Theorem (C. 2024)
The dual descriptions of free Gödel algebras and coproduct of Gödel
algebras can be adapted to GAn by replacing CC(X ) with its subspace

CC(X )n = {C ∈ CC(X ) | C has size at most n}.

Interestingly, free algebras in GAn are almost never bi-Heyting.

Corollary (C. 2024)
A free algebra in GAn is bi-Heyting iff it is finitely generated (iff it is finite).
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THANK YOU!
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