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Free Heyting algebras



Intuitionistic logic is the logic of constructive mathematics and is obtained
by weakening the principles of classical logic via the rejection of the law of
excluded middle (p ∨ ¬p).

Heyting algebras provide the algebraic semantics for the intuitionistic
propositional calculus IPC.

Definition
A Heyting algebra H is a distributive lattice equipped with a binary
operation → satisfying

a ∧ b ≤ c iff a ≤ b → c

for any a, b, c ∈ H.
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A Heyting algebra F is said to be free over a set X if there exists a map
f : X → F such that for any Heyting algebra H and map g : X → H, there
is a unique Heyting homomorphism h : F → H with g = h ◦ f .

F H

X

∃! h

f g

Free Heyting algebras arise as Lindenbaum-Tarski algebras:

Let Form(X ) be the set of formulas with variables from a set X and define
φ ∼ ψ iff ⊢IPC φ↔ ψ. Then Form(X )/∼ is a Heyting algebra free over X .
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The free Heyting algebra over 1 generator is also known as the
Rieger-Nishimura lattice.

⊥

p ¬p

p ∨ ¬p¬¬p

¬¬p ∨ ¬p ¬¬p → p

¬¬p ∨ (¬¬p → p) (¬¬p → p)→ (p ∨ ¬p)

⊤

The free Heyting algebra over 2 generators is very complicated.
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Definition
An Esakia space is a Stone space X with a partial order ≤ such that:

if x ∈ X , then ↑x is closed;
if V ⊆ X is clopen, then ↓V is clopen.

Esakia spaces Heyting algebras

X −→ ClopUp(X )
Spec(H) ←− H

Theorem (Esakia duality 1974)
The category of Heyting algebras and Heyting homomorphisms is dually
equivalent to the category of Esakia spaces and continuous p-morphisms.
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The coloring technique was developed by Esakia and Grigolia in the 1970s
to dually describe sets of generators.

Let n ∈ N. The n-universal model Xn is built as follows:
each point of Xn is associated with a color, which is an element of
P({1, . . . , n}), and the coloring preserves the order;
the layers of Xn are built each one at the time from the top;
the top layer contains 2n points, one for each color;
two points of the same color cannot have the same elements as
immediate successors;
if a point has only one immediate successor, then its color should be
strictly smaller than the one of its successor.

Theorem
Fn is isomorphic to a subalgebra of Up(Xn).
Xn is the dense and open upset of the Esakia dual of Fn consisting of
the points of finite depth (equivalently, ↑x is finite).
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X1 is also known as the Rieger-Nishimura ladder.

The Esakia dual of F1 is the following.

Colors
{1}

∅
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However, X2 is extremely complicated. Its third layer contains more than
250 000 points.

Colors
{1, 2}

{2}{1}

∅

The Esakia dual of F2 has the cardinality of the continuum.
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Free Gödel algebras
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The propositional Gödel-Dummett logic LC is obtained by adding the
prelinearity axiom (p → q) ∨ (q → p) to IPC.

Gödel algebras provide the algebraic semantics for LC.

Definition
A Heyting algebra G is called a Gödel algebra if (a→ b)∨ (b → a) = 1 for
any a, b ∈ G .

We can think of LC as the extension of IPC in which “the truth values are
linearly ordered”. The variety of Gödel algebras is generated by the class of
all finite Heyting chains or by any infinite Heyting chain.

Thus, LC is also the logic of [0, 1] as a Heyting chain, and hence it can
also be thought of as a fuzzy logic. In fact, LC is the t-norm fuzzy logic
associated to the minimum t-norm.

Free Gödel algebras arise as Lindenbaum-Tarski algebras for LC.
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Proposition
An Esakia space X is dual to a Gödel algebra iff it is a root system; i.e.,
↑x is a chain for any x ∈ X . We call such spaces Esakia root systems.

The construction of the n-universal model can be adapted to LC by only
adding points with a single immediate successor. So, the colors strictly
decrease by moving down the layers.

The n-universal model for LC is finite and (once equipped with the
discrete topology) coincides with the Esakia dual of the free Gödel algebra
on n generators.

Colors:

{1}

∅
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Proposition
The n-universal model for LC is isomorphic to the set of all nonempty
chains in P({1, . . . , n}) ordered by C ≤ D iff D is an upset of C .

Colors:
{1, 2}

{1} {2}

∅
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Proposition
The n-universal model for LC is isomorphic to the set of all nonempty
chains in P({1, . . . , n}) ordered by C ≤ D iff D is an upset of C .

P

Which Gödel algebra is dual to what we get when we replace
P({1, . . . , n}) with an arbitrary finite poset P?
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A Gödel algebra F is said to be free over a distributive lattice L if there
exists a lattice homomorphism f : L→ F such that for any Gödel algebra
G and lattice homomorphism g : L→ G , there is a unique Heyting algebra
homomorphism h : F → G with g = h ◦ f .

F G

L

∃! h

f g

Theorem (Aguzzoli, Gerla, and Marra 2008)
Let L be a finite distributive lattice and P a poset such that L ∼= Up(P).
The poset of all nonempty chains in P is the Esakia dual of the Gödel
algebra free over L.
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How to generalize this result to
infinite distributive lattices?

11 / 24



Definition
A Priestley space is a Stone space X with a partial order ≤ such that

x ≰ y implies there is U clopen upset such that x ∈ U and y /∈ U.

Priestley spaces Distributive lattices

X −→ ClopUp(X )
Spec(L) ←− L

Theorem (Priestley duality 1972)
The category of distributive lattices and lattice homomorphisms is dually
equivalent to the category of Priestley spaces and continuous
order-preserving maps.

12 / 24



Definition
If X is a Priestley space, we define

CC(X ) := {C ⊆ X | C is a nonempty closed chain}.

We order CC(X ) by setting C ≤ D iff D is an upset of C .

We topologize CC(X ) with the Vietoris topology, which is generated by
the subbasis consisting of the sets □V and ♢V for any V clopen of X :

□V = {C ∈ CC(X ) | C ⊆ V },
♢V = {C ∈ CC(X ) | C ∩ V ̸= ∅}.

Theorem (C. 2024)
If X is a Priestley space, then CC(X ) is an Esakia root system.
Let L be a distributive lattice and X its Priestley dual. Then the
Gödel algebra free over L is dual to the Esakia space CC(X ).
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0 1 2

∞

X

{0} {1} {2}

{∞}

{∞, 0} {∞, 1} {∞, 2}

CC(X)

0 1 2

∞

X

{0}{1}{2}{∞}

{0, ∞}{1, ∞}{2, ∞}

CC(X)
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Let 2 be the 2-element chain with the discrete topology. If S is a set, we
consider 2S with the product topology and the product order.

Proposition
2S is a Priestley space dual to the distributive lattice free over S.

Theorem (C. 2024)
The Gödel algebra free over a set S is dual to the Esakia space CC(2S).
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Ghilardi in 1992 showed that Heyting algebras free over finitely many
generators are bi-Heyting algebras.

Definition
Let L be a distributive lattice.

L is a co-Heyting algebra if its order dual is a Heyting algebra.
L is a bi-Heyting algebra if it is both a Heyting and a co-Heyting
algebra.

Co-Heyting algebras are dual to co-Esakia spaces and bi-Heyting algebras
are dual to bi-Esakia spaces.

Definition
Let X be a Priestley space.

X is a co-Esakia space if (X ,≥) is an Esakia space.
X is a bi-Esakia space if it is both an Esakia and a co-Esakia space.
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Free Gödel algebras over finitely many generators are finite, and so are
bi-Heyting algebras.

Theorem (C. 2024)
Let F be the Gödel algebra free over a distributive lattice L.
Then F a bi-Heyting algebra iff L is a co-Heyting algebra.

Since free distributive lattices are co-Heyting algebras:

Corollary (C. 2024)
Free Gödel algebras are bi-Heyting algebras.
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0 1 2

∞

X

{0} {1} {2}

{∞}

{∞, 0} {∞, 1} {∞, 2}

CC(X)

0 1 2

∞

X

{0}{1}{2}{∞}

{0, ∞}{1, ∞}{2, ∞}

CC(X)
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Coproducts of Gödel algebras

18 / 24



Coproducts of Heyting algebras (dually, products of Esakia spaces) are
complicated. In 2006 Grigolia gave a description of binary coproducts of
finite Heyting algebras in dual terms.

If 2 is the 2-element chain, seen as an Esakia space, then 2× 2 in the
category of Esakia spaces is infinite. The following are its first 3 layers.

The size of the layers grow exponentially:
the 4th layer has 72 points
and the 5th layer has more than 1021 points.
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Coproducts of Gödel algebras (dually, products of Esakia root systems) are
much simpler. D’Antona and Marra in 2006 dually described the
coproduct of two finite Gödel algebras, which is always finite.

The following is 2× 2 in the category of Esakia root systems.
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Let {Xi} be a family of Esakia root systems. We denote by
∏

i Xi their
cartesian product with the product topology and the product order.

Definition
Let

⊗
i Xi be the subspace of CC

( ∏
i Xi

)
given by⊗

iXi := {C ∈ CC
(∏

iXi
)
| πi [C ] is a principal upset of Xi for each i ∈ I}.

π1 π2
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Theorem (C. 2024)
If {Xi} is a family of Esakia root systems, then

⊗
i Xi is their product

in the category of Esakia root systems.
Let {Gi} be a family of Gödel algebras and {Xi} their dual Esakia
root systems. Then

⊕
i Gi is dual to

⊗
i Xi .

The depth (or height) of a poset is the sup of the lengths of its finite
chains.

Theorem (C. 2024)
Let {Xi} be a family of nonempty Esakia root systems. Then

⊗
i Xi has

depth
1 +

∑
i∈I

(di − 1),

where di ∈ N ∪ {∞} is the depth of Xi .
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Free algebras in varieties of Gödel algebras



Each proper extension of LC is of the form LCn := LC + bdn, where bdn is
the bounded depth n axiom for n ∈ N.

bd0 := ⊥ bdn+1 := xn+1 ∨ (xn+1 → bdn)

The algebraic semantics for LCn is given by GAn; the class of Gödel
algebras validating bdn.

Theorem
Esakia duality restricts to a duality between the category of GAn-algebras
and the category of Esakia root systems of depth ≤ n.
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Theorem (C. 2024)
The dual descriptions of free Gödel algebras and coproduct of Gödel
algebras can be adapted to GAn by replacing CC(X ) with its subspace

CC(X )n = {C ∈ CC(X ) | C has size at most n}.

Interestingly, free GAn-algebras are almost never bi-Heyting.

Corollary (C. 2024)
The GAn-algebra free over a set S is bi-Heyting iff S is finite.
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THANK YOU!
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