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The algebra of topology

A framework for an algebraic treatment of portions of topology.

Investigate properties of topological spaces by studying the algebraic
structures induced on various collections of subsets of a topological space.

McKinsey and Tarski (1944) initiated the study of closure algebras as an
abstraction of topological closure operators on powersets.
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Closure algebras and topological spaces

Definition
@ A Boolean algebra with an operator (BAO) is a Boolean algebra B
together with a unary operator ¢: B — B preserving finite joins.

@ A closure algebra is a BAO (B, <) satisfying the Kuratowski's axioms:

x < Ox OOx < Ox

If X is a topological space, then (p(X),cl) is a closure algebra.

Theorem (McKinsey-Tarski 1944)

An equation holds in (p(X),cl) for every topological space X iff it holds in
every closure algebra.

As a corollary, we obtain a topological semantics for the propositional
modal logic S4.
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Heyting algebras and topological spaces

Definition
A Heyting algebra is a bounded (distributive) lattice equipped with a
binary operation — satisfying

xX<{y—z << xNy<z

If X is a topological space, then O(X) is a Heyting algebra with
U— V=int((X\ U)u V).

Theorem (Stone and Tarski 1938)

An equation holds in O(X) for every topological space X iff it holds in
every Heyting algebra.

As a corollary, we obtain a topological semantics for the intuitionistic
propositional logic.
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Frames and pointfree topology
Note that the Heyting algebra O(X) is always complete.
Definition
@ A frame is a complete Heyting algebra or, equivalently, a complete
lattice satisfying the join infinite distributive law

<\/ a,-) Ab= \/(a,- A b).

1

@ Let Frm be the category of frames and bounded lattice
homomorphisms that preserve arbitrary joins.

Let Top be the category of topological spaces and continuous maps.

Theorem

O: Top — Frm is a contravariant functor and is part of an adjunction
which restricts to a dual equivalence between the full subcategories of
sober topological spaces and of spatial frames.

4/1



McKinsey-Tarski algebras

Note that also the closure algebra (p(X),cl) is always complete.

Definition (Bezhanishvili-Raviprakash 2023)

@ A McKinsey-Tarski algebra (MT-algebra) is a complete closure
algebra.

@ Let MT be the category of MT-algebras and complete Boolean
homomorphisms that are stable; i.e., satisfy Of(x) < f(<Ox).

As observed by Naturman in 1990, this framework is sufficient to capture
all topological spaces.
Theorem

The full subcategory of MT consisting of atomic MT-algebras is dually
equivalent to Top.

Theorem (Bezhanishvili-Raviprakash 2023)

Every frame can be realized as the sublattice of O-fixpoints of some
MT-algebra, where O = =,
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Frames and McKinsey-Tarski algebras

While frames provide a pointfree approach to study the open subsets of
topological spaces, MT-algebras are a pointfree tool to investigate
topological closure operators of topological spaces.

Theorem

Frm js equationally presentable and the forgetful functor Frm — Set has
a left adjoint. In particular, Frm is complete and cocomplete.

Theorem (Melzer)
MT is complete.

GOAL: We show that MT and several related categories lack colimits.
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McKinsey-Tarski algebras and complete stable morphisms
Theorem

The category MT of MT-algebras lacks some countable copowers.

Sketch of the proof.

@ The category CBA of complete Boolean algebras and complete
Boolean homomorphism does not have free objects over infinite sets.

e If Ais the four-element Boolean algebra (free CBA over 1 generator),
then infinite copowers of A do not exist in CBA.

o The forgetful functor MT — CBA is a left adjoint, and hence
preserves colimits.

@ A can be extended to an MT-algebra B.

@ Coproducts of infinitely many copies of B don't exist in MT.

Theorem

The category CBAOg; of complete Boolean algebras with operators and
complete stable homomorphisms lacks some countable copowers.

Similar results for several subcategories of CBAQg;: hold.
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McKinsey-Tarski algebras and stable morphisms

Theorem

The category MTg of MT-algebras and stable morphisms lacks some
binary copowers.

Sketch of the proof.

@ Let cBA be the category of complete Boolean algebras and Boolean
homomorphisms.

@ The forgetful functor MTg — cBA is a left adjoint and surjective.

@ To show that cBA lacks binary copowers, we exploit the dual
equivalence between cBA and the category ED of extremally
disconnected Stone spaces and continuous maps.

@ The category ED lacks some binary powers; e.g., SN x GN.

Theorem

The category cBAQOg; of complete Boolean algebras with operators and
stable homomorphisms lacks some binary copowers.

Similar results for several subcategories of cBAQg; hold.
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Closure algebras and stable morphisms

Theorem

The category CAg of closure algebras and stable morphisms lacks some
coequalizers.

Sketch of the proof.

o CA,; is dually equivalent to the category StoneCq of Stone spaces
equipped with a continuous quasi order and order preserving
continuous maps.

o Both forgetful functors of StoneCgq into the categories of topological
spaces and of quasi ordered sets preserve limits.

@ We found two morphisms in StoneCq without an equalizer.

Theorem

The category BAQg; of Boolean algebras with operators and stable
homomorphisms lacks some coequalizers.

Similar results for several subcategories of BAQOg hold.
9/1



Frames and lattice homomorphisms

Theorem

The category Frmgy of frames and bounded lattice homomorphisms lacks
some binary copowers.

Sketch of the proof.
@ Frmp, is dually equivalent to the category Loc of localic spaces and
order preserving continuous maps.
@ The embedding of the category ED of extremally disconnected spaces
into Loc reflects products.
@ We have seen that ED lacks some binary powers; e.g., SN x N,

Similar proof strategies yield the following results.

Theorem

@ The category Frmypa of frames and Heyting homomorphisms lacks
some binary copowers.

@ The category HAgL of Heyting algebras and bounded lattice
homomorphisms lacks some coequalizers.
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THANK YOU!



