On the universal theory of the free pseudocomplemented distributive lattice

Luca Carai (University of Milan)

Joint work with Tommaso Moraschini

Barcelona, 20 October 2025 IIIA-CSIC

Intuitionistic logic

- Logic of constructive mathematics that has its origins in Brouwer's criticism of the use of the law of excluded middle $(p \lor \neg p)$.
- It is obtained by weakening the principles of classical logic via the rejection of the law of excluded middle.
- Various semantic tools have been developed to study intuitionistic logic: algebraic, relational, and topological.

We denote by IPC the intuitionistic propositional calculus. Formulas in the language of IPC are built up from infinitely countably many propositional variables using $\land, \lor, \rightarrow, \bot, \top$. The negation \neg is defined as an abbreviation $\neg \varphi := \varphi \rightarrow \bot$.

When a propositional formula φ is intuitionistically valid we write $\vdash_{\mathsf{IPC}} \varphi$.

Admissible rules

A multiconclusion rule is an expression of the form $\Gamma \Rightarrow \Delta$, where Γ, Δ are finite sets of formulas.

The expression $\Gamma\Rightarrow\Delta$ should be read as "if every formula in Γ holds, then some formula in Δ holds".

When $\Delta = \{\delta\}$, then we write $\Gamma \Rightarrow \delta$ and call it a single-conclusion rule.

Definition

We say that a rule $\Gamma \Rightarrow \Delta$ is admissible in a logic L if for every substitution σ we have that:

$$\vdash_{\mathsf{L}} \sigma(\gamma)$$
 for every $\gamma \in \Gamma$, then there exists $\delta \in \Delta$ such that $\vdash_{\mathsf{L}} \sigma(\delta)$.

The Kreisel-Putnam rule

$$\neg p \rightarrow q \lor r \Rightarrow (\neg p \rightarrow q) \lor (\neg p \rightarrow r)$$

is admissible in IPC, although $ot \vdash_{\mathsf{IPC}} (\neg p \to q \lor r) \to (\neg p \to q) \lor (\neg p \to r).$

Heyting algebras

The variety HA of Heyting algebras provide the algebraic semantics for IPC.

Definition

A Heyting algebra H is a (bounded) distributive lattice equipped with a binary operation \to satisfying

$$a \wedge b \leq c$$
 iff $a \leq b \rightarrow c$

for any $a, b, c \in H$.

Note that there is a correspondence between terms in the language of Heyting algebras and formulas in the language of IPC.

Theorem (Algebraic completeness of IPC)

Let t_{φ} be a term corresponding to a formula φ . Then

$$\mathsf{HA} \vDash t_{\varphi} = 1 \qquad \textit{iff} \qquad \vdash_{\mathsf{IPC}} \varphi.$$

Free HA and admissible rules

Since Heyting algebras form a variety, for every cardinal κ there exists the free Heyting algebra $\mathbf{F}_{HA}(\kappa)$ over κ generators.

 $\mathbf{F}_{\mathsf{HA}}(\aleph_0)$ can be constructed by quotienting the set of all formulas by setting two formulas φ and ψ equivalent iff $\vdash_{\mathsf{IPC}} \varphi \leftrightarrow \psi$.

In particular, $\vdash_{\mathsf{IPC}} \varphi$ iff the equivalence class of φ is the top of $\mathbf{\textit{F}}_{\mathsf{HA}}(\aleph_0)$.

A substitution σ can be thought as an infinite tuple $(\sigma(p_1), \sigma(p_2), \dots)$ of elements of $\mathbf{F}_{HA}(\aleph_0)$. Therefore, if φ is a formula that corresponds to a term t_{φ} , we have that $\sigma(\varphi)$ corresponds to the term $t_{\varphi}(\sigma(p_1), \sigma(p_2), \dots)$.

Theorem

A rule $\Gamma\Rightarrow\Delta$ is admissible in IPC iff the universal first-order sentence

$$orall \overline{x} \left((t_{\gamma_1} = 1 \And \cdots \And t_{\gamma_n} = 1) \Rightarrow (t_{\delta_1} = 1 \; \textit{or} \; \cdots \; \textit{or} \; t_{\delta_m} = 1)
ight)$$

holds in $\mathbf{F}_{HA}(\aleph_0)$.

Free Heyting algebras and admissible rules

Every universal first-order sentence in the language of Heyting algebras is equivalent to a conjunction of sentences of the form

$$orall \overline{x} \, ig((t_{\gamma_1} = 1 \ \& \ \cdots \ \& \ t_{\gamma_n} = 1) \Rightarrow (t_{\delta_1} = 1 \ ext{or} \ \cdots \ ext{or} \ t_{\delta_m} = 1) ig).$$

Therefore, the universal theory of $\mathbf{F}_{HA}(\aleph_0)$, i.e., the set $\mathsf{Th}_\forall(\mathbf{F}_{HA}(\aleph_0))$ of universal first-order sentences that hold in $\mathbf{F}_{HA}(\aleph_0)$, give all the information on admissible multiconclusion rules of IPC.

For example, the rule $p \lor q \Rightarrow \{p,q\}$ is admissible in IPC as it corresponds to the sentence $\forall x,y \ (x\lor y=1\Rightarrow (x=1 \text{ or } y=1))$, which holds in $\textbf{\textit{F}}_{\mathsf{HA}}(\aleph_0)$ (because free HA are finitely subdirectly irreducible).

Similarly, quasiequations that hold in $\mathbf{F}_{HA}(\aleph_0)$ correspond to single-conclusion rules that are admissible in IPC.

Decidability of admissibility and bases of admissible rules

Theorem (Rybakov 1989, 1985)

The universal theory of $\mathbf{F}_{HA}(\aleph_0)$ is decidable (its elementary theory is not).

While the universal theory of $\mathbf{F}_{HA}(\aleph_0)$ is not finitely axiomatizable, Jěrábek in 2008 provided an independent infinite axiomatization (i.e., a basis of admissible multiconclusion rules).

lemhoff in 2001 provided an independent infinite axiomatization of the quasiequational theory of $\boldsymbol{F}_{HA}(\aleph_0)$ (i.e., a basis of admissible single-conclusion rules) answering affirmatively a conjecture by de Jongh and Visser.

IPC⁻ and Pseudocomplemented distributive lattices

Let IPC⁻ be the fragment of IPC consisting of the propositional intuitionistic validities containing only the connectives $\land, \lor, \neg, \bot, \top$.

Definition

A pseudocomplemented distributive lattice P is a distributive lattice equipped with a unary operation \neg satisfying for any $a,b\in P$:

$$a \wedge b = 0$$
 iff $a \leq \neg b$.

They are the $(\land, \lor, \neg, 0, 1)$ -subreducts of Heyting algebras. The variety PDL provides an algebraic semantics for IPC $^-$.

Theorem (Algebraic completeness of IPC⁻)

Let t_{φ} be a term corresponding to a formula φ . Then

$$\mathsf{PDL} \vDash t_{\varphi} = 1$$
 iff $\vdash_{\mathsf{IPC}^{-}} \varphi$.

Our goals

Let $\mathbf{F}_{PDL}(\aleph_0)$ be the free pseudocomplemented distributive lattice over \aleph_0 generators.

Our goals are:

- Determine whether the universal theory of $\mathbf{F}_{PDL}(\aleph_0)$ is decidable.
- Provide an axiomatization of the universal theory of $\mathbf{F}_{PDL}(\aleph_0)$.

$\mathbf{F}_{PDL}(\aleph_0)$ and admissible rules

IPC⁻ is **not** algebraizable in the sense of Blok and Pigozzi.

The reason is essentially that you cannot always turn an equation t=s in the language of PDL into the validity of a formula in IPC $^-$ because of the lack of the implication connective.

Rules for IPC⁻ correspond to universal first-order sentences of the form

$$orall \overline{x} \left((t_{\gamma_1} = 1 \And \cdots \And t_{\gamma_n} = 1) \Rightarrow (t_{\delta_1} = 1 ext{ or } \cdots ext{ or } t_{\delta_m} = 1)
ight),$$

while generic universal first-order sentences are conjunctions of

$$\forall \overline{x} \left((t_1 = t_1' \& \cdots \& t_n = t_n') \Rightarrow (s_1 = s_1' \text{ or } \cdots \text{ or } s_m = s_m') \right),$$

which are more general.

The decidability of $\mathsf{Th}_\forall(\boldsymbol{F}_\mathsf{PDL}(\aleph_0))$ yields the decidability of admissibility in IPC⁻. However, the axiomatization doesn't have to consist of universal sentences of the first kind (it won't), and so it doesn't correspond to a basis of admissible rules.

Strategy

- Use a duality for finite pseudocomplemented distributive lattices to describe the finite members of PDL that embed into $F_{PDL}(\aleph_0)$.
- Exploit the local finiteness of PDL to obtain a description of the models of $\mathsf{Th}_\forall(\boldsymbol{F}_\mathsf{PDL}(\aleph_0))$; i.e., the members of the universal class $\mathbb{U}(\boldsymbol{F}_\mathsf{PDL}(\aleph_0))$ generated by $\boldsymbol{F}_\mathsf{PDL}(\aleph_0)$.
- Use the description of the members of $\mathbb{U}(\mathbf{F}_{PDL}(\aleph_0))$ to derive the decidability and the axiomatization.

Duality for finite PDL

A map $p: X \to Y$ between finite posets is said to be a weak p-morphism when it is order preserving and for all $x \in X$ and $y \in \max Y$,

if
$$p(x) \le y$$
, there exists $z \in \max \uparrow x$ such that $p(z) = y$.

As a consequence of a duality for PDL due to Priestley (1975) we obtain.

Theorem

The category of finite pseudocomplemented distributive lattices is dually equivalent to the category of finite posets and weak p-morphisms.

finite posets finite PDL
$$X \longrightarrow (Up(X), \subseteq)$$
 $(Jirr(A), \ge) \longleftarrow A$

Posets with free skeleton

Theorem (C. & Moraschini 2025)

Let A be a finite PDL. Then A embeds into $\mathbf{F}_{PDL}(\aleph_0)$ if and only if its dual poset has a free skeleton.

A poset X with minimum \bot is said to have a free skeleton when the following hold:

• for all $x \in X$ and nonempty $Y \subseteq \max \uparrow x$ there exists an element $s_{x,Y} \in \uparrow x$ such that

$$Y = \max \uparrow s_{x,Y};$$

• for all $x \in X$ and nonempty $Y, Z \subseteq \max \uparrow x$,

$$Y \subseteq Z$$
 implies $s_{x,Z} \leq s_{x,Y}$;

• for all $x \in X$ and nonempty $Y \subseteq \max X$,

$$\max \uparrow x \subseteq Y \text{ implies } s_{\perp,Y} \leq x.$$

Duals of free finitely generated PDL

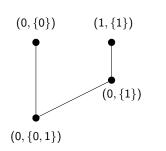
Theorem (Urquhart 1973 (see also Davey & Goldberg 1980))

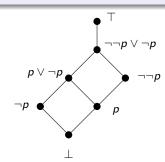
The dual of the free n-generated pseudocomplemented distributive lattice $\mathbf{F}_{PDL}(n)$ is the poset P(n) with universe

$$\{(x,C)\in 2^n\times\wp(2^n):\varnothing\neq C\subseteq\uparrow x\},$$

ordered as follows:

$$(x, C) \le (y, D) \iff x \le y \text{ and } C \supseteq D.$$





Posets with free skeleton and free PDL

Theorem (C. & Moraschini 2025)

Let A be a finite PDL. Then A embeds into $\mathbf{F}_{PDL}(\aleph_0)$ if and only if its dual poset has a free skeleton.

Sketch of the proof: Let $A \in PDL$ be finite.

- A embeds into $\mathbf{F}_{PDL}(\aleph_0)$ iff it embeds into $\mathbf{F}_{PDL}(n)$ for some n.
- A embeds into $\mathbf{F}_{PDL}(n)$ iff its dual is a weak p-morphic image of P(n).
- P(n) has a free skeleton: for all $(x, C) \in P(n)$ and nonempty $Y \subseteq \max \uparrow(x, C)$ take $s_{x,Y} = (x, D)$, where $Y = \{(d, \{d\}) : d \in D\}$.
- Onto weak p-morphisms $P(n) \to X$ transport the free skeleton structure of P(n) to X.
- If a finite poset X has a free skeleton then you can build an onto weak p-morphism $P(n) \to X$ for some n (this is the hard part).

A useful universal algebraic fact

Recall that for a class of algebras K the class of models of $Th_\forall(K)$ is $\mathbb{U}(K)=\mathbb{ISP}_u(K).$

Theorem

Let V be a locally finite variety and $K \subseteq V$. Then

$$\mathbb{U}(\mathsf{K}) = \{A \in \mathsf{V} : B \in \mathbb{IS}(\mathsf{K}) \text{ for every finite subalgebra } B \text{ of } A\}.$$

Main ingredient for the proof: each algebra $\cal A$ embeds into an ultraproduct of its finitely generated subalgebras.

Models of $\mathsf{Th}_{\forall}(\boldsymbol{F}_{\mathsf{PDL}}(\aleph_0))$

Recall: the class of models of $\mathsf{Th}_{\forall}(\mathbf{F}_{\mathsf{PDL}}(\aleph_0))$ is $\mathbb{U}(\mathbf{F}_{\mathsf{PDL}}(\aleph_0))$.

Theorem (C. & Moraschini 2025)

$$\mathbb{U}(\textbf{\textit{F}}_{PDL}(\aleph_0)) =$$

 $\{A \in \mathsf{PDL} : \textit{duals of all finite subalgebras of } A \textit{ have a free skeleton}\}.$

It is well known that for all varieties V and infinite cardinal κ we have

$$\mathbb{U}(\mathbf{F}_{\mathsf{V}}(\aleph_0)) = \mathbb{U}(\mathbf{F}_{\mathsf{V}}(\kappa)) = \mathbb{U}(\{\mathbf{F}_{\mathsf{V}}(n) : n \in \mathbb{Z}^+\}),$$

or equivalently

$$\mathsf{Th}_{\forall}(\boldsymbol{F}_{\mathsf{V}}(\aleph_0)) = \mathsf{Th}_{\forall}(\boldsymbol{F}_{\mathsf{V}}(\kappa)) = \mathsf{Th}_{\forall}(\{\boldsymbol{F}_{\mathsf{V}}(n) : n \in \mathbb{Z}^+\}).$$

Therefore, we also obtain a characterization of the members of $\mathbb{U}(\mathbf{F}_{PDL}(\kappa))$ for every infinite cardinal κ and of $\mathbb{U}(\{\mathbf{F}_{PDL}(n): n \in \mathbb{Z}^+\})$.

Axiomatization of $\mathsf{Th}_\forall(\boldsymbol{F}_\mathsf{PDL}(\aleph_0))$

The atomic diagram of a finite pseudocomplemented distributive lattice $A = \{a_1, \dots, a_n\}$ is the set of equations in the variables x_1, \dots, x_n

$$\{f(x_{i_1},\ldots,x_{i_m})\approx x_k: f\in \{\land,\lor,\neg,0,1\} \text{ and } f^A(a_{i_1},\ldots,a_{i_m})=a_k\};$$

together with the negated equations

$$\{x_m \not\approx x_k : m < k \le n\}.$$

Theorem (C. & Moraschini 2025)

The theory $\mathsf{Th}_\forall(\textbf{\textit{F}}_\mathsf{PDL}(\aleph_0))$ is recursively axiomatizable by

$$\Sigma \cup \{\neg \exists x_1, \dots, x_n \mid \neg \text{diag}(A) : A \in \text{PDL is finite} \}$$

and its dual lacks a free skeleton,

where Σ is a finite set of axioms of PDL.

We have also obtained an alternative axiomatization that, although still infinite, captures the idea of having a free skeleton in a more concrete way.

Decidability

Theorem (C. & Moraschini 2025)

Th $_{\forall}(\mathbf{F}_{PDL}(\aleph_0))$ is decidable.

Sketch of the proof:

- We have obtained a recursive axiomatization of $\mathsf{Th}_{\forall}(\mathbf{F}_{\mathsf{PDL}}(\aleph_0))$.
- Let V be a finitely axiomatizable and locally finite variety of finite type. If $\mathsf{Th}_\forall(\mathbf{F}_\mathsf{V}(\aleph_0))$ is recursively axiomatizable, then it is also decidable.
- We conclude that $\mathsf{Th}_\forall(\mathbf{F}_\mathsf{PDL}(\aleph_0))$ is decidable.

Corollary

Admissibility of multiconclusion rules in IPC⁻ is decidable.

Corollary

 $\mathsf{Th}_{\forall}(\boldsymbol{F}_{\mathsf{PDL}}(\kappa))$ for κ infinite, and $\mathsf{Th}_{\forall}(\{\boldsymbol{F}_{\mathsf{PDL}}(n):n\in\mathbb{Z}^+\})$ are decidable.

Idziak in 1987 showed that the elementary theory of $\{F_{PDL}(n): n \in \mathbb{Z}^+\}$ is undecidable.

Derivable and admissible rules in IPC

IPC can also be defined as a consequence relation. When there is an intuitionistically valid proof of formula δ from a set of formulas Γ , we write $\Gamma \vdash_{\mathsf{IPC}} \delta$.

A single-conclusion rule $\Gamma \Rightarrow \delta$ is called derivable in IPC if $\Gamma \vdash_{\mathsf{IPC}} \delta$.

The deduction theorem yields that $\Gamma \Rightarrow \delta$ is derivable in IPC iff $\vdash_{\mathsf{IPC}} \gamma_1 \wedge \cdots \wedge \gamma_n \rightarrow \delta$.

A derivable rule is always admissible, but the converse is not true in general. When that happens, the logic is said to be structurally complete.

The Kreisel-Putnam rule

$$\neg p \rightarrow q \lor r \Rightarrow (\neg p \rightarrow q) \lor (\neg p \rightarrow r)$$

is admissible, but not derivable, in IPC. So,

Theorem

IPC is **not** structurally complete.

Algebraically: $HA \neq \mathbb{Q}(\mathbf{F}_{HA}(\aleph_0))$.

Derivable and admissible rules in IPC⁻

IPC⁻ can be defined also as a consequence relation as a fragment of IPC. For a set of formulas $\Gamma \cup \{\delta\}$ in the language of IPC⁻ we define $\Gamma \vdash_{\mathsf{IPC}^-} \delta$ iff $\Gamma \vdash_{\mathsf{IPC}} \delta$.

Recall that a rule $\Gamma \Rightarrow \Delta$ is admissible in IPC $^-$ if for every substitution σ we have that:

$$\vdash_{\mathsf{IPC}^{-}} \sigma(\gamma) \text{ for every } \gamma \in \Gamma \text{, then there exists } \delta \in \Delta \text{ such that } \vdash_{\mathsf{IPC}^{-}} \sigma(\delta).$$

The substitution σ ranges over the formulas in the language of IPC⁻. So, if $\Gamma \Rightarrow \Delta$ is admissible in IPC⁻, then it is not immediate that it is also admissible in IPC. Mints showed that in fact it is even derivable in IPC.

Theorem (Mints 1976)

IPC⁻ is structurally complete.

Algebraically: for Φ "special quasiequation", PDL $\models \Phi$ iff $\mathbf{F}_{PDL}(\aleph_0) \models \Phi$.

Nonetheless, PDL $\neq \mathbb{Q}(\mathbf{F}_{PDL}(\aleph_0))$ (shown by looking at the SI members).

MOLTES GRÀCIES!

MUCHAS GRACIAS!