## La dualità di Baker-Beynon oltre la semisemplicità

Luca Carai, Università degli Studi di Milano

Collaborazione con: Serafina Lapenta e Luca Spada

Seminario, Università degli Studi di Milano 27 febbraio 2024

## Baker-Beynon duality

## Definition

A Riesz space V is an  $\mathbb{R}$ -vector space equipped with a lattice structure such that for every  $u, v, w \in V$  and  $0 \leq r \in \mathbb{R}$ :

• if  $u \leq v$ , then  $u + w \leq v + w$  and  $ru \leq rv$ .

A map between Riesz spaces is a Riesz space homomorphism if it is a linear map and a lattice homomorphism.

### Examples of Riesz spaces

- $\mathbb{R}$
- $\mathbb{R}^X$  for a set X
- $\mathbb{R} \times \mathbb{R}$  (lexicographic product)
- $C(X, \mathbb{R})$  for a topological space X

A continuous function  $f : \mathbb{R}^{\kappa} \to \mathbb{R}$  is piecewise linear (homogeneous) if there exist  $g_1, \ldots, g_n : \mathbb{R}^{\kappa} \to \mathbb{R}$  linear homogeneous functions (each in finitely many variables) such that for each  $x \in \mathbb{R}^{\kappa}$  we have  $f(x) = g_i(x)$ for some  $i = 1, \ldots, n$ .



A continuous function  $f : \mathbb{R}^{\kappa} \to \mathbb{R}$  is piecewise linear (homogeneous) if there exist  $g_1, \ldots, g_n : \mathbb{R}^{\kappa} \to \mathbb{R}$  linear homogeneous functions (each in finitely many variables) such that for each  $x \in \mathbb{R}^{\kappa}$  we have  $f(x) = g_i(x)$ for some  $i = 1, \ldots, n$ .



The piecewise linear functions  $f : \mathbb{R}^{\kappa} \to \mathbb{R}$  form a Riesz space that we denote by  $\mathsf{PWL}(\mathbb{R}^{\kappa})$ .

### Theorem (Baker 1968)

Let  $\kappa$  be a cardinal. The free Riesz space on  $\kappa$  generators is isomorphic to  $PWL(\mathbb{R}^{\kappa})$ . The free generators correspond to the projection maps onto each coordinate.

If  $X \subseteq \mathbb{R}^{\kappa}$ , we let  $\mathsf{PWL}(X) := \{f | X \text{ with } f \in \mathsf{PWL}(\mathbb{R}^{\kappa})\}.$ 

Which Riesz spaces are isomorphic to PWL(X) for some  $X \subseteq \mathbb{R}^{\kappa}$ ?

### Definition

An  $\ell$ -ideal in a Riesz space is a subgroup (linear subspace) I that is convex, i.e.  $|a| \le |b|$  and  $b \in I$  imply  $a \in I$ .

## Definition

- A nontrivial Riesz space A is simple if {0} and A are the only  $\ell$ -ideals of A.
- A Riesz space is semisimple if the intersection of all its maximal  $\ell$ -ideals is {0}.

## Proposition

- A Riesz space is simple iff it is isomorphic to  $\mathbb{R}$ .
- A Riesz space is semisimple iff it can be (subdirectly) embedded into a power of ℝ.
- $\mathsf{PWL}(X)$  is semisimple for any  $X \subseteq \mathbb{R}^{\kappa}$ .

## Theorem (Baker 1968)

Every semisimple Riesz space is isomorphic to PWL(C) for some closed cone  $C \subseteq \mathbb{R}^{\kappa}$ .

## Definition

A nonempty subset  $C \subseteq \mathbb{R}^{\kappa}$  is a closed cone if it is closed under multiplication by nonnegative scalars and it is topologically closed in  $\mathbb{R}^{\kappa}$ with the euclidean topology.



This representation result extends to Baker-Beynon duality.

Let  $\mathscr{F}_{\kappa}$  be the free Riesz space over  $\kappa$  generators. For any  $T \subseteq \mathscr{F}_{\kappa}$  and  $S \subseteq \mathbb{R}^{\kappa}$ , we define the following operators.

$$V(T) = \{ x \in \mathbb{R}^{\kappa} \mid t(x) = 0 \text{ for all } [t] \in T \}$$
$$I(S) = \{ [t] \in \mathscr{F}_{\kappa} \mid t(x) = 0 \text{ for all } x \in S \}.$$

### Galois connection

$$T \subseteq I(S)$$
 iff  $S \subseteq V(T)$ .

- V(T) is always a closed cone of  $\mathbb{R}^{\kappa}$ .
- I(S) is always an  $\ell$ -ideal of  $\mathscr{F}_{\kappa}$  that is intersection of maximal  $\ell$ -ideals.

### Proposition

V and I form a dual isomorphism between the poset of  $\ell$ -ideals of  $\mathscr{F}_{\kappa}$  that are intersections of maximal  $\ell$ -ideals and the poset of closed cones in  $\mathbb{R}^{\kappa}$ .

### Theorem (Beynon 1974)

The category of semisimple Riesz spaces and Riesz space homomorphisms is dually equivalent to the category of closed cones in  $\mathbb{R}^{\kappa}$  and piecewise linear maps between them.

On objects:

Let A be a semisimple Riesz space, then  $A \cong \mathscr{F}_{\kappa}/J$ , where J is an intersection of maximal  $\ell$ -ideals of  $\mathscr{F}_{\kappa}$ . Then map

 $A \mapsto V(J),$ 

which is a closed cone in  $\mathbb{R}^{\kappa}$ .

Let *C* be a closed cone in  $\mathbb{R}^{\kappa}$ . Then map

 $C \mapsto \mathsf{PWL}(C),$ 

which is semisimple and isomorphic to  $\mathscr{F}_{\kappa}/I(C)$ .

 $\mathbb{R}$  (as a Riesz space) is dual to the semiline  $\{x \in \mathbb{R} \mid x \ge 0\}$ . Indeed,  $\mathbb{R} \cong \mathsf{PWL}(\{x \in \mathbb{R} \mid x \ge 0\})$ .  $\mathscr{F}_2 / \langle (x - y) \land y \land 0 \rangle$  is dual to  $\{(x, y) \in \mathbb{R}^2 \mid 0 \le y \le x\}$ .



Generalizing Baker-Beynon duality beyond semisimplicity

In the definition of the operators

$$V(T) = \{x \in \mathbb{R}^{\kappa} \mid t(x) = 0 \text{ for all } [t] \in T\} \text{ with } T \subseteq \mathscr{F}_{\kappa}$$
$$I(S) = \{[t] \in \mathscr{F}_{\kappa} \mid t(x) = 0 \text{ for all } x \in S\} \text{ with } S \subseteq \mathbb{R}^{\kappa}.$$

we can replace  $\mathbb{R}$  with any Riesz space A and still get a Galois connection. In the definition of the operators

$$V(T) = \{x \in A^{\kappa} \mid t(x) = 0 \text{ for all } [t] \in T\} \text{ with } T \subseteq \mathscr{F}_{\kappa}$$
$$I(S) = \{[t] \in \mathscr{F}_{\kappa} \mid t(x) = 0 \text{ for all } x \in S\} \text{ with } S \subseteq A^{\kappa}.$$

we can replace  $\mathbb{R}$  with any Riesz space A and still get a Galois connection.

Caramello, Marra, and Spada (2021) observed that this can be done for any variety of algebras by replacing  $\mathbb{R}$  with any algebra in that variety. They also show that this approach also works in a more categorical setting.

Our goal is to replace  $\mathbb{R}$  with a Riesz space that guarantees more  $\ell$ -ideals of  $\mathscr{F}_{\kappa}$  to be fixpoints of IV.

It is not possible to obtain a Riesz space A such that for any  $\kappa$  the fixpoints of IV are all the  $\ell$ -ideals of  $\mathscr{F}_{\kappa}$ .

### Definition

An  $\ell$ -ideal I is prime if  $a \land b \in I$  implies  $a \in I$  or  $b \in I$ .

#### Theorem

- A/I is linearly ordered iff I is prime.
- Every ℓ-ideal is an intersection of prime ℓ-ideals.
- Every Riesz space is subdirect product of linearly ordered ones.

## Theorem (C., Lapenta, Spada)

Let  $\alpha$  be a cardinal. There exists an ultrapower  $\mathcal{U}$  of  $\mathbb{R}$  in which all  $\kappa$ -generated (with  $\kappa < \alpha$ ) linearly ordered Riesz spaces embed. In particular, when  $\alpha = \omega$  we can take  $\mathcal{U}$  to be any ultrapower of  $\mathbb{R}$  over a nonprincipal ultrafilter of a countably infinite set.

Fix a cardinal  $\alpha$  and an ultrapower  $\mathcal{U}$  of  $\mathbb{R}$  in which all  $\kappa$ -generated with  $\kappa < \alpha$  linearly ordered Riesz spaces embed.  $\kappa$  will denote an arbitrary cardinal smaller than  $\alpha$ .

We consider the operators:

$$\begin{aligned} \mathsf{V}(\mathcal{T}) = & \{ x \in \mathcal{U}^{\kappa} \mid t(x) = 0 \text{ for all } [t] \in \mathcal{T} \} \text{ with } \mathcal{T} \subseteq \mathscr{F}_{\kappa} \\ \mathsf{I}(S) = & \{ [t] \in \mathscr{F}_{\kappa} \mid t(x) = 0 \text{ for all } x \in S \} \text{ with } S \subseteq \mathcal{U}^{\kappa}. \end{aligned}$$

Galois connection

$$T \subseteq I(S)$$
 iff  $S \subseteq V(T)$ .

- The fixpoints of IV are exactly the  $\ell$ -ideals of  $\mathscr{F}_{\kappa}$ .
- We call  $S \subseteq \mathcal{U}^{\kappa}$  such that S = VI(S) a generalized closed cone.

#### Proposition

V and V establish a dual isomorphism between the poset of  $\ell$ -ideals of  $\mathscr{F}_{\kappa}$  and the poset of generalized closed cones in  $\mathcal{U}^{\kappa}$ .

### Definition

- We say that a map U<sup>κ</sup> → U<sup>μ</sup> is definable if its components are defined by terms in the language of Riesz spaces.
- If  $X \subseteq \mathcal{U}^{\kappa}$ , we denote by  $\mathsf{Def}(X)$  the set of definable maps  $f: X \to \mathcal{U}$ .

## Theorem (C., Lapenta, Spada)

The category of  $\kappa$ -generated Riesz spaces (with  $\kappa < \alpha$ ) and Riesz space homomorphisms is dually equivalent to the category of generalized closed cones in  $\mathcal{U}^{\kappa}$  (with  $\kappa < \alpha$ ) and definable maps.

On objects:

Let A be a  $\kappa$ -generated Riesz space, so  $A \cong \mathscr{F}_{\kappa}/J$ . Then map

$$A \mapsto V(J),$$

which is a generalized closed cone in  $\mathcal{U}^{\kappa}$ .

Let C be a generalized closed cone in  $\mathcal{U}^{\kappa}$ . Then map

 $C \mapsto \mathsf{Def}(C),$ 

which is isomorphic to  $\mathscr{F}_{\kappa} / I(C)$ .

## Consequences and applications

### Proposition

- The generalized closed cones in U<sup>κ</sup> (together with Ø) form the closed of a topology on U<sup>κ</sup>. The closure of a nonempty X ⊆ U<sup>κ</sup> is VI(X).

| $\mathcal{F}_{\kappa}$ | $\mathbb{R}^{\kappa}$ (Baker-Beynon) | $\mathcal{U}^\kappa$ (gen. Baker-Beynon)             |
|------------------------|--------------------------------------|------------------------------------------------------|
| maximal $\ell$ -ideals | half-lines                           | closures of points of $\mathbb{R}^{\kappa}$          |
|                        | from the origin                      | (except the origin)                                  |
| intersections of       | closed cones                         | closures of nonempty                                 |
| maximal $\ell$ -ideals |                                      | subsets of $\mathbb{R}^{\kappa}$                     |
| prime $\ell$ -ideals   |                                      | irreducible closed subsets                           |
|                        |                                      | ${}={}$ closures of points of $\mathcal{U}^{\kappa}$ |
|                        |                                      | (except the origin)                                  |
| $\ell$ -ideals         |                                      | generalized closed cones                             |

### Definition

- Recall that an Riesz space is semisimple if the intersection of all its maximal *l*-ideals is {0}.
- A Riesz space A is called Archimedean if for every a, b ∈ A, we have that na ≤ b for all n ∈ N implies a ≤ 0.
- Semisemplicity always implies Archimedeanity.
- Archimedeanity implies semisimplicity in the presence of a strong order-unit (e.g., in the finitely generated setting).

#### Theorem

Let A be a Riesz space and  $C \subseteq U^{\kappa}$  its dual generalized closed cone. A is semisimple iff  $C = V I(C \cap \mathbb{R}^{\kappa})$ , i.e. C is the closure of  $C \cap \mathbb{R}^{\kappa}$  in  $U^{\kappa}$ .

Note that  $C \cap \mathbb{R}^{\kappa}$  is the closed cone in  $\mathbb{R}^{\kappa}$  corresponding to A under Baker-Beynon duality.

For any natural number  $n \ge 1$  let  $\pi_n \colon \mathcal{U}^{\omega} \to \mathcal{U}^n$  be the map that sends  $(x_i)_{i \in \omega}$  to  $(x_1, \ldots, x_n)$ .

#### Theorem

Let A be an  $\omega$ -generated Riesz space and  $C \subseteq U^{\omega}$  its dual generalized closed cone.

Then A is archimedean iff

$$C = \bigcap_{n=1}^{\infty} \pi_n^{-1} [\mathsf{V} \mathsf{I}(\mathsf{V} \mathsf{I}(\pi_n[C]) \cap \mathbb{R}^n)],$$

where the subsets  $\pi_n^{-1}[V I(V I(\pi_n[C]) \cap \mathbb{R}^n)]$  form a decreasing sequence of generalized closed cones in  $\mathcal{U}^{\omega}$ .

When  $\kappa > \omega$ , the decreasing sequence must be replaced by a downdirected family of generalized closed cones in  $\mathcal{U}^{\kappa}$ .

## Embedding $\operatorname{Spec}(\mathscr{F}_{\kappa})$ into $\mathcal{U}^{\kappa}$

If A is a Riesz space, then  $\text{Spec}(A) = \{\text{prime } \ell \text{-ideals of } A\}$  is called the spectrum of A. It is naturally equipped with the Zariski topology generated by the closed subsets  $\{P \in \text{Spec}(A) \mid a \in P\}$ , where a ranges in A.

If *P* is a prime  $\ell$ -ideal of  $\mathscr{F}_{\kappa}$ , then V(*P*) is the closure of a point of  $\mathcal{U}^{\kappa}$ . For each prime  $\ell$ -ideal *P* choose one such point and denote it by  $\mathscr{E}(P)$ .

#### Theorem

•  $\mathscr{E}$ : Spec $(\mathscr{F}_{\kappa}) \to \mathcal{U}^{\kappa}$  is a topological embedding.

The posets of the open subsets of Spec(ℱ<sub>κ</sub>) and of U<sup>κ</sup> \ {O} are isomorphic.

 $\mathscr{E}: \operatorname{Spec}(\mathscr{F}_{\kappa}) \to \mathcal{U}^{\kappa}$  can be thought of as a coordinatization of  $\operatorname{Spec}(\mathscr{F}_{\kappa})$  with coordinates in  $\mathcal{U}$ .

- By the correspondence theorem, if A ≅ ℱ<sub>κ</sub> /J, then we can think of Spec(A) as a subspace of Spec(ℱ<sub>κ</sub>).
- $\mathscr{E}$  restricts to an embedding of  $\operatorname{Spec}(A)$  into  $\mathcal{U}^{\kappa}$  whose image is  $\mathscr{E}[\operatorname{Spec}(\mathscr{F}_{\kappa})] \cap V(J).$

While the spectrum as a topological space is not sufficient to recover the original Riesz space, the coordinatization is enough:

#### Theorem

 $A \cong \mathsf{Def}(\mathscr{E}[\mathsf{Spec}(A)])$  for any Riesz space A.

## $\ensuremath{\mathcal{U}}$ as the non-standard line

Let  $\alpha = \omega$  and assume that  $\mathcal{U}$  is an ultrapower of  $\mathbb{R}$  defined as  $\mathcal{U} = \mathbb{R}^{\mathbb{N}}/\mathcal{F}$ with  $\mathcal{F}$  a nonprincipal ultrafilter of  $\mathcal{P}(\mathbb{N})$ .

We can think of  $\mathcal{U}$  as a non-standard line.  $\mathcal{U}$  is a linearly ordered field containing (a copy of)  $\mathbb{R}$ . The elements of  $\mathcal{U}$  are called hyperreal numbers.

- $x \in \mathcal{U}$  is infinitesimal if  $|x| \leq r$  for every  $0 < r \in \mathbb{R}$ .
- $x \in \mathcal{U}$  is unlimited if  $|x| \ge r$  for every  $0 < r \in \mathbb{R}$ .

Working with an ultrapower allows us to define the enlargement  ${}^*A \subseteq \mathcal{U}^n$  of a subset  $A \subseteq \mathbb{R}^n$ , as well as the enlargement  ${}^*f : \mathcal{U}^n \to \mathcal{U}$  of a function  $f : \mathbb{R}^n \to \mathbb{R}$ .

#### Theorem (Transfer principle)

Let  $\varphi$  be a first-order sentence. Then  $\varphi$  is true in  $\mathbb{R}$  iff  $*\varphi$  is true in  $\mathcal{U}$ .

•  $A \subseteq {}^*A$ .

- If A is finite, then  $A = {}^{*}A$ .
- ${}^{*}\mathbb{Q}$  contains both nonzero infinitesimal and unlimited numbers.

Let  $g: \mathcal{U}^n \to \mathcal{U}$  be definable, i.e. there is a term t such that g(x) = t(x) for all  $x \in \mathcal{U}^n$ . If  $f: \mathbb{R}^n \to \mathbb{R}$  is the piecewise linear function defined by the same term, then  $g = {}^*f$ .

#### Proposition

Let  $C \subseteq \mathcal{U}^n$  be a generalized closed cone. Then  $Def(C) = \{({}^*f)_{|C} \mid f : \mathbb{R}^n \to \mathbb{R} \text{ piecewise linear}\}.$ 

The graph of  ${}^*f: \mathcal{U}^n \to \mathcal{U}$  is just the enlargement of the graph of f.



Definable functions naturally generalize piecewise linear functions.

Let  $\mathbb{R} \overrightarrow{\times} \mathbb{R}$ . Then its dual generalized closed cone is

 $\mathcal{C} = \{(x, y) \in \mathcal{U}^2 \mid x > 0, y \ge 0, \text{ and } y/x \text{ is infinitesimal}\} \cup \{(0, 0)\}.$ 



So,

$$\begin{split} \mathbb{R} \overrightarrow{\times} \mathbb{R} &\cong \mathsf{Def}(\mathcal{C}) = \{({}^*f)_{|\mathcal{C}} \mid f \colon \mathbb{R}^2 \to \mathbb{R} \text{ piecewise linear} \} \\ &= \{({}^*f)_{|\mathcal{C}} \mid f \colon \mathbb{R}^2 \to \mathbb{R} \text{ linear} \}. \end{split}$$

## Indexes and prime ideals

We have seen that prime  $\ell$ -ideals of  $\mathscr{F}_n$  (and hence *n*-generated linearly ordered Riesz spaces) correspond to the closures of the points of  $\mathcal{U}^n$ .

We want to understand how these subsets of  $\mathcal{U}^n$  look like.

## Theorem (Orthogonal decomposition)

If  $x \in U^n$ , then  $x = \alpha_1 v_1 + \cdots + \alpha_k v_k$  where  $\alpha_1, \ldots, \alpha_k \in U$  are positive,  $\alpha_{i+1}/\alpha_i$  is infinitesimal for each i < k, and  $v_1, \ldots, v_k \in \mathbb{R}^n$  are orthonormal vectors. Furthermore, this decomposition is unique.

## Definition

- We call a finite sequence  $(v_1, \ldots, v_k)$  of orthonormal vectors in  $\mathbb{R}^n$  an index.
- We denote by *ι*(*x*) the index (*v*<sub>1</sub>,..., *v<sub>k</sub>*) made of the vectors appearing in the orthogonal decomposition of *x* ∈ U<sup>n</sup>.
- Let  $\mathbf{v}, \mathbf{w}$  be two indexes. We write  $\mathbf{v} \leq \mathbf{w}$  when  $\mathbf{v}$  is a truncation of  $\mathbf{w}$ , i.e.  $\mathbf{v} = (v_1, \dots, v_h)$  and  $\mathbf{w} = (v_1, \dots, v_k)$  for  $h \leq k$ .

### Definition

If **v** is an index, let 
$$Cone(\mathbf{v}) \coloneqq \{y \in \mathcal{U}^n \mid \iota(y) \le \mathbf{v}\}.$$

#### Theorem

The closure of x in  $\mathcal{U}^n$  is  $Cone(\iota(x))$ .

### Proposition

If  $x \in \mathcal{U}^n$ , then

$$\mathsf{Def}(\mathsf{Cone}(\iota(x))) \cong \{ {}^*f(x) \in \mathcal{U} \mid f : \mathbb{R}^n \to \mathbb{R} \text{ piecewise linear} \} \\ = \{ {}^*f(x) \in \mathcal{U} \mid f : \mathbb{R}^n \to \mathbb{R} \text{ linear} \}.$$

So, each *n*-generated linearly ordered Riesz spaces is of the form  $\{{}^*f(x) \mid f : \mathbb{R}^n \to \mathbb{R} \text{ linear}\}$  for some  $x \in \mathcal{U}^n$ .

Let  $\varepsilon \in \mathcal{U}$  be a positive infinitesimal and  $x = (1, \varepsilon)$ . Then

$$x=1(1,0)+\varepsilon(0,1)$$

is the orthogonal decomposition of x. Thus,  $\iota(x) = (v_1, v_2)$  with  $v_1 = (1, 0)$  and  $v_2 = (0, 1)$ . We have

$$y \in \text{Cone}(\iota(x))$$
 iff  $y = O$ , or  
 $y = \alpha_1(1,0)$  (orthogonal decomposition), or  
 $y = \alpha_1(1,0) + \alpha_2(0,1)$  (orthogonal decomposition)

Then Cone( $\iota(x)$ ), i.e. the closure of x in  $\mathcal{U}^2$  is

 $\{(\alpha_1,\alpha_2)\in \mathcal{U}^2\mid \alpha_1>0,\ \alpha_2\geq 0 \text{ and } \alpha_2/\alpha_1 \text{ is infinitesimal}\}\cup \{\mathcal{O}\}.$ 

•
$$x = (1, \varepsilon)$$

The dual Riesz space is  $\mathbb{R} \overrightarrow{\times} \mathbb{R}$ . Indeed,

$$\mathsf{Def}(\mathsf{Cone}(\iota(x))) \cong \{ {}^*f(1,\varepsilon) \mid f : \mathbb{R}^n \to \mathbb{R} \text{ linear} \}$$
$$= \{ a + b\varepsilon \in \mathcal{U} \mid a, b \in \mathbb{R} \} \cong \mathbb{R} \overrightarrow{\times} \mathbb{R}.$$

#### Theorem

 $I \circ Cone: \mathbf{v} \mapsto I(Cone(\mathbf{v}))$  induces an order-isomorphism between the set of indexes ordered by truncation and  $Spec(\mathscr{F}_n)$  ordered by reverse inclusion.

If  $\mathbf{v} = (v_1, \dots, v_k)$  is an index, then we call a subset of  $\mathbb{R}^n$  a **v**-cone if it is the positive span of  $\{\sum_{i=1}^h r_i v_i \mid h \leq k\}$  for some  $0 < r_1, \dots, r_k \in \mathbb{R}$ .

#### Theorem

 $Cone(\mathbf{v})$  is the intersection of the enlargements of all the **v**-cones.

Corollary (Panti 1999)

Every prime  $\ell$ -ideal of PWL( $\mathbb{R}^n$ ) is of the form

 $\{f \in \mathsf{PWL}(\mathbb{R}^n) \mid f \text{ vanishes on some } \mathbf{v}\text{-cone}\}$ 

for some index v.

Main idea of the proof: Let  $f \in PWL(\mathbb{R}^n)$ . By the transfer principle, \*f vanishes on Cone(**v**) iff f vanishes on some **v**-cone.

Recall: if we map  $P \in \text{Spec}(\mathscr{F}_n)$  to a point  $x \in \mathcal{U}^n$  such that V(P) is the closure of x, then we get an embedding  $\mathscr{E}: \text{Spec}(\mathscr{F}_n) \to \mathcal{U}^n$ .

Indexes allow us to choose x for every P in a canonical way (modulo fixing a positive infinitesimal  $\varepsilon \in U$ ).

If  $P \in \text{Spec}(\mathscr{F}_n)$ , then there is a unique index  $\mathbf{v} = (v_1, \ldots, v_k)$  such that  $V(P) = \text{Cone}(\mathbf{v})$ . Define

$$\mathscr{E}(\mathsf{P}) \coloneqq \mathsf{v}_1 + \varepsilon \mathsf{v}_2 + \cdots + \varepsilon^{k-1} \mathsf{v}_k.$$

If *P* is a maximal  $\ell$ -ideal, then the corresponding index consists of a single vector  $\mathbf{v} = (v_1)$ . Therefore,  $\mathscr{E}(P) \in \mathbb{R}^n$ .

We have  $\mathscr{E}[\operatorname{Spec}(\mathscr{F}_1)] = \{-1,1\} \subseteq \mathcal{U}.$ 



Note that  $\operatorname{Spec}(\mathscr{F}_1) = \operatorname{Max}\operatorname{Spec}(\mathscr{F}_1)$ .

We have  $\mathscr{E}[\operatorname{MaxSpec}(\mathscr{F}_2)] = S^1 \subseteq \mathbb{R}^2 \subseteq \mathcal{U}^2$ .











 $\operatorname{Spec}(\mathscr{F}_3)$ 

We have  $\mathscr{E}[\operatorname{MaxSpec}(\mathscr{F}_3)] = S^2 \subseteq \mathbb{R}^3 \subseteq \mathcal{U}^3.$ 









# THANK YOU!