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Seminario, Università degli Studi di Milano
27 febbraio 2024



Baker-Beynon duality

0 / 28



Definition
A Riesz space V is an R-vector space equipped with a lattice structure
such that for every u, v , w ∈ V and 0 ≤ r ∈ R:

if u ≤ v , then u + w ≤ v + w and ru ≤ rv .
A map between Riesz spaces is a Riesz space homomorphism if it is a
linear map and a lattice homomorphism.

Examples of Riesz spaces
R
RX for a set X
R−→×R (lexicographic product)
C(X ,R) for a topological space X
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A continuous function f : Rκ → R is piecewise linear (homogeneous) if
there exist g1, . . . , gn : Rκ → R linear homogeneous functions (each in
finitely many variables) such that for each x ∈ Rκ we have f (x) = gi(x)
for some i = 1, . . . , n.

The piecewise linear functions f : Rκ → R form a Riesz space that we
denote by PWL(Rκ).
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Theorem (Baker 1968)
Let κ be a cardinal. The free Riesz space on κ generators is isomorphic to
PWL(Rκ). The free generators correspond to the projection maps onto
each coordinate.

If X ⊆ Rκ, we let PWL(X ) := {f |X with f ∈ PWL(Rκ)}.

Which Riesz spaces are isomorphic to PWL(X ) for some X ⊆ Rκ?
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Definition
An ℓ-ideal in a Riesz space is a subgroup (linear subspace) I that is
convex, i.e. |a| ≤ |b| and b ∈ I imply a ∈ I.

Definition
A nontrivial Riesz space A is simple if {0} and A are the only ℓ-ideals
of A.
A Riesz space is semisimple if the intersection of all its maximal
ℓ-ideals is {0}.

Proposition
A Riesz space is simple iff it is isomorphic to R.
A Riesz space is semisimple iff it can be (subdirectly) embedded into
a power of R.
PWL(X ) is semisimple for any X ⊆ Rκ.
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Theorem (Baker 1968)
Every semisimple Riesz space is isomorphic to PWL(C) for some closed
cone C ⊆ Rκ.

Definition
A nonempty subset C ⊆ Rκ is a closed cone if it is closed under
multiplication by nonnegative scalars and it is topologically closed in Rκ

with the euclidean topology.

This representation result extends to Baker-Beynon duality.
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Let F κ be the free Riesz space over κ generators.
For any T ⊆ F κ and S ⊆ Rκ, we define the following operators.

V(T ) ={x ∈ Rκ | t(x) = 0 for all [t] ∈ T}
I(S) ={[t] ∈ F κ | t(x) = 0 for all x ∈ S}.

Galois connection

T ⊆ I (S) iff S ⊆ V (T ) .

V(T ) is always a closed cone of Rκ.
I(S) is always an ℓ-ideal of F κ that is intersection of maximal
ℓ-ideals.

Proposition
V and I form a dual isomorphism between the poset of ℓ-ideals of F κ that
are intersections of maximal ℓ-ideals and the poset of closed cones in Rκ.
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Theorem (Beynon 1974)
The category of semisimple Riesz spaces and Riesz space homomorphisms
is dually equivalent to the category of closed cones in Rκ and piecewise
linear maps between them.

On objects:

Let A be a semisimple Riesz space, then A ∼= F κ /J , where J is an
intersection of maximal ℓ-ideals of F κ. Then map

A 7→ V(J),

which is a closed cone in Rκ.

Let C be a closed cone in Rκ. Then map

C 7→ PWL(C),

which is semisimple and isomorphic to F κ / I(C).
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R (as a Riesz space) is dual to the semiline {x ∈ R | x ≥ 0}.
Indeed, R ∼= PWL({x ∈ R | x ≥ 0}). F 2 /⟨(x − y) ∧ y ∧ 0⟩ is dual to
{(x , y) ∈ R2 | 0 ≤ y ≤ x}.

0
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Generalizing Baker-Beynon duality beyond semisimplicity
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In the definition of the operators

V(T ) ={x ∈ Rκ | t(x) = 0 for all [t] ∈ T} with T ⊆ F κ

I(S) ={[t] ∈ F κ | t(x) = 0 for all x ∈ S} with S ⊆ Rκ.

we can replace R with any Riesz space A and still get a Galois connection.
In the definition of the operators

V(T ) ={x ∈ Aκ | t(x) = 0 for all [t] ∈ T} with T ⊆ F κ

I(S) ={[t] ∈ F κ | t(x) = 0 for all x ∈ S} with S ⊆ Aκ.

we can replace R with any Riesz space A and still get a Galois connection.
Caramello, Marra, and Spada (2021) observed that this can be done for
any variety of algebras by replacing R with any algebra in that variety.
They also show that this approach also works in a more categorical
setting.
Our goal is to replace R with a Riesz space that guarantees more ℓ-ideals
of F κ to be fixpoints of I V.
It is not possible to obtain a Riesz space A such that for any κ the
fixpoints of I V are all the ℓ-ideals of F κ.
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Definition
An ℓ-ideal I is prime if a ∧ b ∈ I implies a ∈ I or b ∈ I.

Theorem
A/I is linearly ordered iff I is prime.
Every ℓ-ideal is an intersection of prime ℓ-ideals.
Every Riesz space is subdirect product of linearly ordered ones.

Theorem (C., Lapenta, Spada)
Let α be a cardinal. There exists an ultrapower U of R in which all
κ-generated (with κ < α) linearly ordered Riesz spaces embed. In
particular, when α = ω we can take U to be any ultrapower of R over a
nonprincipal ultrafilter of a countably infinite set.
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Fix a cardinal α and an ultrapower U of R in which all κ-generated with
κ < α linearly ordered Riesz spaces embed. κ will denote an arbitrary
cardinal smaller than α.
We consider the operators:

V(T ) ={x ∈ Uκ | t(x) = 0 for all [t] ∈ T} with T ⊆ F κ

I(S) ={[t] ∈ F κ | t(x) = 0 for all x ∈ S} with S ⊆ Uκ.

Galois connection

T ⊆ I (S) iff S ⊆ V (T ) .

The fixpoints of I V are exactly the ℓ-ideals of F κ.
We call S ⊆ Uκ such that S = V I(S) a generalized closed cone.

Proposition
V and I establish a dual isomorphism between the poset of ℓ-ideals of F κ

and the poset of generalized closed cones in Uκ.
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Definition
We say that a map Uκ → Uµ is definable if its components are
defined by terms in the language of Riesz spaces.
If X ⊆ Uκ, we denote by Def(X ) the set of definable maps f : X → U .

Theorem (C., Lapenta, Spada)
The category of κ-generated Riesz spaces (with κ < α) and Riesz space
homomorphisms is dually equivalent to the category of generalized closed
cones in Uκ (with κ < α) and definable maps.

On objects:
Let A be a κ-generated Riesz space, so A ∼= F κ /J . Then map

A 7→ V(J),
which is a generalized closed cone in Uκ.
Let C be a generalized closed cone in Uκ. Then map

C 7→ Def(C),
which is isomorphic to F κ / I(C). 12 / 28



Consequences and applications
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Proposition
The generalized closed cones in Uκ (together with ∅) form the closed
of a topology on Uκ. The closure of a nonempty X ⊆ Uκ is V I(X ).
Rκ is a subset of Uκ and the closed subsets of Rκ with the subspace
topology are exactly the closed cones (and ∅).

F κ Rκ (Baker-Beynon) Uκ (gen. Baker-Beynon)
maximal ℓ-ideals half-lines closures of points of Rκ

from the origin (except the origin)
intersections of closed cones closures of nonempty
maximal ℓ-ideals subsets of Rκ

prime ℓ-ideals irreducible closed subsets
= closures of points of Uκ

(except the origin)
ℓ-ideals generalized closed cones
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Definition
Recall that an Riesz space is semisimple if the intersection of all its
maximal ℓ-ideals is {0}.
A Riesz space A is called Archimedean if for every a, b ∈ A, we have
that na ≤ b for all n ∈ N implies a ≤ 0.

Semisemplicity always implies Archimedeanity.
Archimedeanity implies semisimplicity in the presence of a strong
order-unit (e.g., in the finitely generated setting).

Theorem
Let A be a Riesz space and C ⊆ Uκ its dual generalized closed cone.
A is semisimple iff C = V I(C ∩ Rκ), i.e. C is the closure of C ∩ Rκ in Uκ.

Note that C ∩ Rκ is the closed cone in Rκ corresponding to A under
Baker-Beynon duality.
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For any natural number n ≥ 1 let πn : Uω → Un be the map that sends
(xi)i∈ω to (x1, . . . , xn).

Theorem
Let A be an ω-generated Riesz space and C ⊆ Uω its dual generalized
closed cone.
Then A is archimedean iff

C =
∞⋂

n=1
π−1

n [V I(V I(πn[C ]) ∩ Rn)],

where the subsets π−1
n [V I(V I(πn[C ]) ∩ Rn)] form a decreasing sequence of

generalized closed cones in Uω.

When κ > ω, the decreasing sequence must be replaced by a downdirected
family of generalized closed cones in Uκ.
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Embedding Spec(F κ) into Uκ
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If A is a Riesz space, then Spec(A) = {prime ℓ-ideals of A} is called the
spectrum of A. It is naturally equipped with the Zariski topology generated
by the closed subsets {P ∈ Spec(A) | a ∈ P}, where a ranges in A.

If P is a prime ℓ-ideal of F κ, then V(P) is the closure of a point of Uκ.
For each prime ℓ-ideal P choose one such point and denote it by E (P).

Theorem
E : Spec(F κ) → Uκ is a topological embedding.
The posets of the open subsets of Spec(F κ) and of Uκ \ {O} are
isomorphic.
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E : Spec(F κ) → Uκ can be thought of as a coordinatization of
Spec(F κ) with coordinates in U .

By the correspondence theorem, if A ∼= F κ /J , then we can think of
Spec(A) as a subspace of Spec(F κ).
E restricts to an embedding of Spec(A) into Uκ whose image is
E [Spec(F κ)] ∩ V(J).

While the spectrum as a topological space is not sufficient to recover the
original Riesz space, the coordinatization is enough:

Theorem
A ∼= Def(E [Spec(A)]) for any Riesz space A.
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U as the non-standard line
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Let α = ω and assume that U is an ultrapower of R defined as U = RN/F
with F a nonprincipal ultrafilter of P(N).

We can think of U as a non-standard line. U is a linearly ordered field
containing (a copy of) R. The elements of U are called hyperreal
numbers.

x ∈ U is infinitesimal if |x | ≤ r for every 0 < r ∈ R.
x ∈ U is unlimited if |x | ≥ r for every 0 < r ∈ R.

Working with an ultrapower allows us to define the enlargement ∗A ⊆ Un

of a subset A ⊆ Rn, as well as the enlargement ∗f : Un → U of a function
f : Rn → R.

Theorem (Transfer principle)
Let φ be a first-order sentence. Then φ is true in R iff ∗φ is true in U .

A ⊆ ∗A.
If A is finite, then A = ∗A.
∗Q contains both nonzero infinitesimal and unlimited numbers.
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Let g : Un → U be definable, i.e. there is a term t such that g(x) = t(x)
for all x ∈ Un. If f : Rn → R is the piecewise linear function defined by the
same term, then g = ∗f .

Proposition
Let C ⊆ Un be a generalized closed cone. Then
Def(C) = {(∗f )|C | f : Rn → R piecewise linear}.

The graph of ∗f : Un → U is just the enlargement of the graph of f .

f : R2 → R ∗f : U2 → U

Definable functions naturally generalize piecewise linear functions.
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Let R−→×R. Then its dual generalized closed cone is

C = {(x , y) ∈ U2 | x > 0, y ≥ 0, and y/x is infinitesimal} ∪ {(0, 0)}.

So,

R−→×R ∼= Def(C) = {(∗f )|C | f : R2 → R piecewise linear}
= {(∗f )|C | f : R2 → R linear}.
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Indexes and prime ideals
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We have seen that prime ℓ-ideals of F n (and hence n-generated linearly
ordered Riesz spaces) correspond to the closures of the points of Un.

We want to understand how these subsets of Un look like.

Theorem (Orthogonal decomposition)
If x ∈ Un, then x = α1v1 + · · · + αkvk where α1, . . . , αk ∈ U are positive,
αi+1/αi is infinitesimal for each i < k, and v1, . . . , vk ∈ Rn are
orthonormal vectors. Furthermore, this decomposition is unique.

Definition
We call a finite sequence (v1, . . . , vk) of orthonormal vectors in Rn an
index.
We denote by ι(x) the index (v1, . . . , vk) made of the vectors
appearing in the orthogonal decomposition of x ∈ Un.
Let v, w be two indexes. We write v ≤ w when v is a truncation of w,
i.e. v = (v1, . . . , vh) and w = (v1, . . . , vk) for h ≤ k.
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Definition
If v is an index, let Cone(v) := {y ∈ Un | ι(y) ≤ v}.

Theorem
The closure of x in Un is Cone(ι(x)).

Proposition
If x ∈ Un, then

Def(Cone(ι(x))) ∼= {∗f (x) ∈ U | f : Rn → R piecewise linear}
= {∗f (x) ∈ U | f : Rn → R linear}.

So, each n-generated linearly ordered Riesz spaces is of the form
{∗f (x) | f : Rn → R linear} for some x ∈ Un.
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Let ε ∈ U be a positive infinitesimal and x = (1, ε). Then
x = 1(1, 0) + ε(0, 1)

is the orthogonal decomposition of x . Thus, ι(x) = (v1, v2) with
v1 = (1, 0) and v2 = (0, 1). We have
y ∈ Cone(ι(x)) iff y = O, or

y = α1(1, 0) (orthogonal decomposition), or
y = α1(1, 0) + α2(0, 1) (orthogonal decomposition)

Then Cone(ι(x)), i.e. the closure of x in U2 is
{(α1, α2) ∈ U2 | α1 > 0, α2 ≥ 0 and α2/α1 is infinitesimal} ∪ {O}.

x = (1, ε)

The dual Riesz space is R−→×R. Indeed,
Def(Cone(ι(x))) ∼= {∗f (1, ε) | f : Rn → R linear}

= {a + bε ∈ U | a, b ∈ R} ∼= R−→×R. 23 / 28



Theorem
I ◦ Cone: v 7→ I(Cone(v)) induces an order-isomorphism between the set of
indexes ordered by truncation and Spec(F n) ordered by reverse inclusion.

If v = (v1, . . . , vk) is an index, then we call a subset of Rn a v-cone if it is
the positive span of {

∑h
i=1 rivi | h ≤ k} for some 0 < r1, . . . , rk ∈ R.

Theorem
Cone(v) is the intersection of the enlargements of all the v-cones.

Corollary (Panti 1999)
Every prime ℓ-ideal of PWL(Rn) is of the form

{f ∈ PWL(Rn) | f vanishes on some v-cone}

for some index v.

Main idea of the proof: Let f ∈ PWL(Rn). By the transfer principle, ∗f
vanishes on Cone(v) iff f vanishes on some v-cone.
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Recall: if we map P ∈ Spec(F n) to a point x ∈ Un such that V(P) is the
closure of x , then we get an embedding E : Spec(F n) → Un.

Indexes allow us to choose x for every P in a canonical way (modulo fixing
a positive infinitesimal ε ∈ U).

If P ∈ Spec(F n), then there is a unique index v = (v1, . . . , vk) such that
V(P) = Cone(v). Define

E (P) := v1 + εv2 + · · · + εk−1vk .

If P is a maximal ℓ-ideal, then the corresponding index consists of a single
vector v = (v1). Therefore, E (P) ∈ Rn.
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Spec(F 1)

We have E [Spec(F 1)] = {−1, 1} ⊆ U .

−1 1

Note that Spec(F 1) = MaxSpec(F 1).
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Spec(F 2)

We have E [MaxSpec(F 2)] = S1 ⊆ R2 ⊆ U2.
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Spec(F 2)

We have E [Spec(F 2)] ⊆ U2 consists of points infinitesimally close to S1.
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We have E [Spec(F 2)] ⊆ U2 consists of points infinitesimally close to S1.
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Spec(F 3)

We have E [MaxSpec(F 3)] = S2 ⊆ R3 ⊆ U3.

S2

ε
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Spec(F 3)

We have E [Spec(F 3)] ⊆ U3 consists of points infinitesimally close to S2.
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THANK YOU!


	titlepage
	Baker-Beynon duality
	Generalization of Baker-Beynon
	Consequences and applications
	Embedding `3́9`42`"̇613A``45`47`"603ASpec(`3́9`42`"̇613A``45`47`"603AF) into U
	U as the non-standard line
	Indexes and prime ideals

	Thank you

