La dualità di Baker-Beynon oltre la semisemplicità

Luca Carai, Università degli Studi di Milano

Collaborazione con: Serafina Lapenta e Luca Spada

Seminario, Università degli Studi di Milano 27 febbraio 2024

Baker-Beynon duality

Definition

A Riesz space V is an $\mathbb R$ -vector space equipped with a lattice structure such that for every $u, v, w \in V$ and $0 \le r \in \mathbb{R}$:

• if $u \le v$, then $u + w \le v + w$ and $ru \le rv$.

A map between Riesz spaces is a Riesz space homomorphism if it is a linear map and a lattice homomorphism.

Examples of Riesz spaces

$$
\bullet\ \mathbb{R}
$$

$$
\bullet\;\mathbb{R}^X\;\text{for a set}\;X
$$

- $\mathbb{R} \overrightarrow{\times} \mathbb{R}$ (lexicographic product)
- \bullet $C(X,\mathbb{R})$ for a topological space X

A continuous function $f\colon\mathbb{R}^{\kappa}\to\mathbb{R}$ is piecewise linear (homogeneous) if there exist $g_1,\ldots,g_n\colon\mathbb{R}^{\kappa}\to\mathbb{R}$ linear homogeneous functions (each in finitely many variables) such that for each $x\in\mathbb{R}^{\kappa}$ we have $f(x)=g_i(x)$ for some $i = 1, \ldots, n$.

A continuous function $f\colon\mathbb{R}^{\kappa}\to\mathbb{R}$ is piecewise linear (homogeneous) if there exist $g_1,\ldots,g_n\colon\mathbb{R}^{\kappa}\to\mathbb{R}$ linear homogeneous functions (each in finitely many variables) such that for each $x\in\mathbb{R}^{\kappa}$ we have $f(x)=g_i(x)$ for some $i = 1, \ldots, n$.

The piecewise linear functions $f\colon\mathbb{R}^{\kappa}\to\mathbb{R}$ form a Riesz space that we denote by PWL(\mathbb{R}^{κ}).

Theorem (Baker 1968)

Let *κ* be a cardinal. The free Riesz space on *κ* generators is isomorphic to PWL(\mathbb{R}^{κ}). The free generators correspond to the projection maps onto each coordinate.

If $X \subseteq \mathbb{R}^{\kappa}$, we let $\mathsf{PWL}(X) \coloneqq \{f|_X \text{ with } f \in \mathsf{PWL}(\mathbb{R}^{\kappa})\}.$

Which Riesz spaces are isomorphic to $\mathsf{PWL}(X)$ for some $X \subseteq \mathbb{R}^\kappa?$

Definition

An *ℓ*-ideal in a Riesz space is a subgroup (linear subspace) I that is convex, i.e. $|a| \leq |b|$ and $b \in I$ imply $a \in I$.

Definition

- A nontrivial Riesz space A is simple if {0} and A are the only *ℓ*-ideals of A.
- A Riesz space is semisimple if the intersection of all its maximal *ℓ*-ideals is {0}.

Proposition

- \bullet A Riesz space is simple iff it is isomorphic to \mathbb{R} .
- A Riesz space is semisimple iff it can be (subdirectly) embedded into a power of \mathbb{R} .
- $PWL(X)$ is semisimple for any $X \subseteq \mathbb{R}^k$.

Theorem (Baker 1968)

Every semisimple Riesz space is isomorphic to $PWL(C)$ for some closed cone $C \subseteq \mathbb{R}^{\kappa}$.

Definition

A nonempty subset $C \subseteq \mathbb{R}^{\kappa}$ is a closed cone if it is closed under multiplication by nonnegative scalars and it is topologically closed in R *κ* with the euclidean topology.

This representation result extends to Baker-Beynon duality.

Let \mathscr{F}_κ be the free Riesz space over κ generators. For any $\mathcal{T} \subseteq \mathscr{F}_\kappa$ and $\mathcal{S} \subseteq \mathbb{R}^\kappa$, we define the following operators.

$$
V(T) = \{x \in \mathbb{R}^k \mid t(x) = 0 \text{ for all } [t] \in T\}
$$

$$
I(S) = \{[t] \in \mathcal{F}_{\kappa} \mid t(x) = 0 \text{ for all } x \in S\}.
$$

Galois connection

$$
T\subseteq I(S) \quad \text{iff} \quad S\subseteq V(T) \ .
$$

- $V(\mathcal{T})$ is always a closed cone of $\mathbb{R}^{\kappa}.$
- **•** I(S) is always an *ℓ*-ideal of \mathcal{F}_k that is intersection of maximal *ℓ*-ideals.

Proposition

V and I form a dual isomorphism between the poset of *ℓ*-ideals of F*^κ* that are intersections of maximal *ℓ*-ideals and the poset of closed cones in \mathbb{R}^k .

Theorem (Beynon 1974)

The category of semisimple Riesz spaces and Riesz space homomorphisms is dually equivalent to the category of closed cones in \mathbb{R}^k and piecewise linear maps between them.

On objects:

Let A be a semisimple Riesz space, then $A \cong \mathscr{F}_{\kappa}/J$, where J is an intersection of maximal *ℓ*-ideals of \mathcal{F}_κ . Then map

 $A \mapsto V(J)$,

which is a closed cone in R *κ* .

Let C be a closed cone in R *κ* . Then map

 $C \mapsto \text{PWL}(C)$,

which is semisimple and isomorphic to \mathscr{F}_{κ} / I(C).

 $\mathbb R$ (as a Riesz space) is dual to the semiline $\{x \in \mathbb R \mid x \geq 0\}.$ Indeed, $\mathbb{R} \cong \text{PWL}(\{x \in \mathbb{R} \mid x \geq 0\})$. $\mathscr{F}_2 / \langle (x - y) \wedge y \wedge 0 \rangle$ is dual to $\{(x, y) \in \mathbb{R}^2 \mid 0 \le y \le x\}.$

Generalizing Baker-Beynon duality beyond semisimplicity

In the definition of the operators

$$
V(T) = \{x \in \mathbb{R}^k \mid t(x) = 0 \text{ for all } [t] \in T\} \text{ with } T \subseteq \mathcal{F}_\kappa
$$

$$
I(S) = \{[t] \in \mathcal{F}_\kappa \mid t(x) = 0 \text{ for all } x \in S\} \text{ with } S \subseteq \mathbb{R}^\kappa.
$$

we can replace $\mathbb R$ with any Riesz space A and still get a Galois connection. In the definition of the operators

$$
\mathsf{V}(\mathcal{T}) = \{x \in A^{\kappa} \mid t(x) = 0 \text{ for all } [t] \in \mathcal{T}\} \text{ with } \mathcal{T} \subseteq \mathscr{F}_{\kappa}
$$

$$
\mathsf{I}(S) = \{[t] \in \mathscr{F}_{\kappa} \mid t(x) = 0 \text{ for all } x \in S\} \text{ with } S \subseteq A^{\kappa}.
$$

we can replace $\mathbb R$ with any Riesz space A and still get a Galois connection.

Caramello, Marra, and Spada (2021) observed that this can be done for any variety of algebras by replacing $\mathbb R$ with any algebra in that variety. They also show that this approach also works in a more categorical setting.

Our goal is to replace R with a Riesz space that guarantees more *ℓ*-ideals of \mathscr{F}_k to be fixpoints of IV.

It is not possible to obtain a Riesz space A such that for any *κ* the fixpoints of IV are all the ℓ -ideals of \mathscr{F}_{κ} .

Definition

An ℓ -ideal *I* is prime if $a \wedge b \in I$ implies $a \in I$ or $b \in I$.

Theorem

- A/I is linearly ordered iff I is prime.
- Every *ℓ*-ideal is an intersection of prime *ℓ*-ideals.
- Every Riesz space is subdirect product of linearly ordered ones.

Theorem (C., Lapenta, Spada)

Let α be a cardinal. There exists an ultrapower U of $\mathbb R$ in which all *κ*-generated (with *κ < α*) linearly ordered Riesz spaces embed. In particular, when $\alpha = \omega$ we can take U to be any ultrapower of R over a nonprincipal ultrafilter of a countably infinite set.

Fix a cardinal α and an ultrapower U of R in which all κ -generated with *κ < α* linearly ordered Riesz spaces embed. *κ* will denote an arbitrary cardinal smaller than *α*.

We consider the operators:

$$
V(T) = \{x \in \mathcal{U}^{\kappa} \mid t(x) = 0 \text{ for all } [t] \in T\} \text{ with } T \subseteq \mathcal{F}_{\kappa}
$$

$$
I(S) = \{[t] \in \mathcal{F}_{\kappa} \mid t(x) = 0 \text{ for all } x \in S\} \text{ with } S \subseteq \mathcal{U}^{\kappa}.
$$

Galois connection

$$
\mathcal{T}\subseteq I(S) \quad \text{iff} \quad S\subseteq V(\mathcal{T})\ .
$$

- **•** The fixpoints of IV are exactly the *ℓ*-ideals of \mathcal{F}_k .
- We call $S \subseteq \mathcal{U}^{\kappa}$ such that $S = \mathsf{V} \mathsf{I}(S)$ a generalized closed cone.

Proposition

V and I establish a dual isomorphism between the poset of *ℓ*-ideals of F*^κ* and the poset of generalized closed cones in U^k .

Definition

- We say that a map $\mathcal{U}^{\kappa} \to \mathcal{U}^{\mu}$ is <mark>definable</mark> if its components are defined by terms in the language of Riesz spaces.
- If $X \subseteq \mathcal{U}^{\kappa}$, we denote by $\overline{\mathsf{Def}(X)}$ the set of definable maps $f \colon X \to \mathcal{U}.$

Theorem (C., Lapenta, Spada)

The category of *κ*-generated Riesz spaces (with *κ < α*) and Riesz space homomorphisms is dually equivalent to the category of generalized closed *cones in* \mathcal{U}^{κ} (with $\kappa < \alpha$) and definable maps.

On objects:

Let A be a κ -generated Riesz space, so $A \cong \mathscr{F}_{\kappa}/J$. Then map

$$
A\mapsto V(J),
$$

which is a generalized closed cone in \mathcal{U}^{κ} .

Let C be a generalized closed cone in \mathcal{U}^{κ} . Then map

 $C \mapsto Def(C)$,

which is isomorphic to $\mathcal{F}_k / I(C)$.

Consequences and applications

Proposition

- The generalized closed cones in \mathcal{U}^{κ} (together with \varnothing) form the closed of a topology on \mathcal{U}^{κ} . The closure of a nonempty $X \subseteq \mathcal{U}^{\kappa}$ is $\mathsf{V} \mathsf{I}(X)$.
- \mathbb{R}^{κ} is a subset of U^κ and the closed subsets of \mathbb{R}^{κ} with the subspace topology are exactly the closed cones (and \varnothing).

Definition

- Recall that an Riesz space is semisimple if the intersection of all its maximal *ℓ*-ideals is {0}.
- A Riesz space A is called Archimedean if for every $a, b \in A$, we have that *na* $\leq b$ for all *n* $\in \mathbb{N}$ implies *a* ≤ 0 .
- **•** Semisemplicity always implies Archimedeanity.
- Archimedeanity implies semisimplicity in the presence of a strong order-unit (e.g., in the finitely generated setting).

Theorem

Let A be a Riesz space and $C \subseteq \mathcal{U}^{\kappa}$ its dual generalized closed cone. A is semisimple iff $C = \mathsf{VI}(C \cap \mathbb{R}^k)$, i.e. C is the closure of $C \cap \mathbb{R}^k$ in \mathcal{U}^k .

Note that $C \cap \mathbb{R}^k$ **is the closed cone in** \mathbb{R}^k **corresponding to A under** Baker-Beynon duality.

For any natural number $n\geq 1$ let $\pi_n\colon \mathcal{U}^\omega \to \mathcal{U}^n$ be the map that sends $(x_i)_{i\in\omega}$ to (x_1,\ldots,x_n) .

Theorem

Let A be an *ω*-generated Riesz space and C ⊆ U*^ω* its dual generalized closed cone.

Then A is archimedean iff

$$
C=\bigcap_{n=1}^{\infty}\pi_n^{-1}[V\mathsf{I}(V\mathsf{I}(\pi_n[C])\cap\mathbb{R}^n)],
$$

where the subsets $\pi_n^{-1}[\nabla\, {\sf I}(\nabla\, {\sf I}(\pi_n[C]) \cap {\mathbb R}^n)]$ form a decreasing sequence of generalized closed cones in U *ω* .

When $\kappa > \omega$, the decreasing sequence must be replaced by a downdirected family of generalized closed cones in \mathcal{U}^{κ} .

Embedding Spec(F*κ*) into U *κ*

If A is a Riesz space, then $Spec(A) = \{prime \$. ideals of $A\}$ is called the spectrum of A. It is naturally equipped with the Zariski topology generated by the closed subsets $\{P \in \text{Spec}(A) \mid a \in P\}$, where a ranges in A.

If P is a prime ℓ -ideal of ${\mathscr F}_\kappa$, then $\mathsf{V}(P)$ is the closure of a point of $\mathcal{U}^\kappa.$ For each prime ℓ -ideal P choose one such point and denote it by $\mathscr{E}(P)$.

Theorem

 ${\mathscr E} \colon \operatorname{Spec}({\mathscr F}_\kappa) \to \mathcal{U}^\kappa$ is a topological embedding.

The posets of the open subsets of $\text{Spec}(\mathscr{F}_\kappa)$ and of $\mathcal{U}^\kappa\setminus\{0\}$ are isomorphic.

 ${\mathscr E} \colon \operatorname{\mathsf{Spec}}\nolimits(\mathscr{F}_\kappa) \to \mathcal{U}^\kappa$ can be thought of as a coordinatization of Spec(\mathscr{F}_κ) with coordinates in \mathcal{U} .

- By the correspondence theorem, if A ∼= F*^κ /*J, then we can think of Spec(A) as a subspace of Spec(\mathscr{F}_κ).
- ${\mathscr E}$ restricts to an embedding of Spec(A) into ${\cal U}^{\kappa}$ whose image is $\mathscr{E}[\text{Spec}(\mathscr{F}_\kappa)] \cap V(J).$

While the spectrum as a topological space is not sufficient to recover the original Riesz space, the coordinatization is enough:

Theorem

 $A \cong Def(\mathscr{E}[\text{Spec}(A)])$ for any Riesz space A.

U as the non-standard line

Let $\alpha = \omega$ and assume that $\mathcal U$ is an ultrapower of $\mathbb R$ defined as $\mathcal U = \mathbb R^{\mathbb N}/\mathcal F$ with $\mathcal F$ a nonprincipal ultrafilter of $\mathcal P(\mathbb N)$.

We can think of U as a non-standard line. U is a linearly ordered field containing (a copy of) $\mathbb R$. The elements of $\mathcal U$ are called hyperreal numbers.

- $x \in \mathcal{U}$ is infinitesimal if $|x| \leq r$ for every $0 < r \in \mathbb{R}$.
- $x \in \mathcal{U}$ is unlimited if $|x| > r$ for every $0 < r \in \mathbb{R}$.

Working with an ultrapower allows us to define the enlargement $^*A \subseteq \mathcal{U}^n$ of a subset $A \subseteq \mathbb{R}^n$, as well as the enlargement ${}^*f \colon \mathcal{U}^n \to \mathcal{U}$ of a function $f: \mathbb{R}^n \to \mathbb{R}$.

Theorem (Transfer principle)

Let φ be a first-order sentence. Then φ is true in $\mathbb R$ iff $^*\varphi$ is true in U.

 $A \subseteq {}^{\ast}A$.

- If A is finite, then $A = {}^*A$.
- ^{*}Q contains both nonzero infinitesimal and unlimited numbers.

Let $g: U^n \to U$ be definable, i.e. there is a term t such that $g(x) = t(x)$ for all $x\in\mathcal{U}^n$. If $f\colon\mathbb{R}^n\to\mathbb{R}$ is the piecewise linear function defined by the same term, then $g = {}^*f$.

Proposition

Let $C \subset \mathcal{U}^n$ be a generalized closed cone. Then $\text{Def}(C) = \{({}^*\!f)_{|C} \mid f : \mathbb{R}^n \to \mathbb{R} \text{ piecewise linear}\}.$

The graph of ${}^*f: \mathcal{U}^n \to \mathcal{U}$ is just the enlargement of the graph of f .

Definable functions naturally generalize piecewise linear functions.

Let $\mathbb{R}\overrightarrow{\times}\mathbb{R}.$ Then its dual generalized closed cone is

 $C = \{ (x, y) \in \mathcal{U}^2 \mid x > 0, y \ge 0, \text{ and } y/x \text{ is infinitesimal} \} \cup \{ (0, 0) \}.$

So,

$$
\mathbb{R} \overrightarrow{\times} \mathbb{R} \cong \text{Def}(C) = \{({}^*f)_{|C} | f : \mathbb{R}^2 \to \mathbb{R} \text{ piecewise linear}\}
$$

$$
= \{({}^*f)_{|C} | f : \mathbb{R}^2 \to \mathbb{R} \text{ linear}\}.
$$

Indexes and prime ideals

We have seen that prime *ℓ*-ideals of \mathcal{F}_n (and hence *n*-generated linearly ordered Riesz spaces) correspond to the closures of the points of $\mathcal{U}^n.$

We want to understand how these subsets of \mathcal{U}^n look like.

Theorem (Orthogonal decomposition)

If $x \in \mathcal{U}^n$, then $x = \alpha_1 v_1 + \cdots + \alpha_k v_k$ where $\alpha_1, \ldots, \alpha_k \in \mathcal{U}$ are positive, α_{i+1}/α_i is infinitesimal for each $i < k$, and $v_1, \ldots, v_k \in \mathbb{R}^n$ are orthonormal vectors. Furthermore, this decomposition is unique.

Definition

- We call a finite sequence $(\mathsf{v}_1,\ldots,\mathsf{v}_k)$ of orthonormal vectors in \mathbb{R}^n an index.
- We denote by $\iota(x)$ the index (v_1, \ldots, v_k) made of the vectors appearing in the orthogonal decomposition of $x \in \mathcal{U}^n$.
- Let **v**, **w** be two indexes. We write $v \leq w$ when **v** is a truncation of **w**, i.e. **v** = $(v_1, ..., v_h)$ and **w** = $(v_1, ..., v_k)$ for $h \leq k$.

Definition

If **v** is an index, let Cone(**v**) := {
$$
y \in \mathcal{U}^n | \iota(y) \leq \mathbf{v}
$$
 }.

Theorem

The closure of x in \mathcal{U}^n is Cone($\iota(x)$).

Proposition

If $x \in \mathcal{U}^n$, then

$$
\mathsf{Def}(\mathsf{Cone}(\iota(x))) \cong \{^*f(x) \in \mathcal{U} \mid f : \mathbb{R}^n \to \mathbb{R} \text{ piecewise linear}\}
$$

$$
= \{^*f(x) \in \mathcal{U} \mid f : \mathbb{R}^n \to \mathbb{R} \text{ linear}\}.
$$

So, each n-generated linearly ordered Riesz spaces is of the form $\{ {}^*f(x) \mid f : \mathbb{R}^n \to \mathbb{R} \text{ linear} \}$ for some $x \in \mathcal{U}^n$.

Let $\varepsilon \in \mathcal{U}$ be a positive infinitesimal and $x = (1, \varepsilon)$. Then

$$
x=1(1,0)+\varepsilon(0,1)
$$

is the orthogonal decomposition of x. Thus, $\iota(x) = (\nu_1, \nu_2)$ with $v_1 = (1, 0)$ and $v_2 = (0, 1)$. We have

 $y \in Cone(\iota(x))$ iff $y = 0$, or $y = \alpha_1(1,0)$ (orthogonal decomposition), or $y = \alpha_1(1,0) + \alpha_2(0,1)$ (orthogonal decomposition)

Then Cone $(\iota(x))$, i.e. the closure of x in \mathcal{U}^2 is

 $\{(\alpha_1,\alpha_2)\in \mathcal{U}^2\mid \alpha_1>0,\,\,\alpha_2\geq 0\,\, \text{and}\,\, \alpha_2/\alpha_1\,\, \text{is infinitesimal}\}\cup \{\mathcal{O}\}.$

$$
\overbrace{\phantom{(\mathcal{L}_{\mathcal{X}}\circ \mathcal{X}}{X=(1,\varepsilon)}}^{\bullet}.
$$

The dual Riesz space is $\mathbb{R}\overrightarrow{\times}\mathbb{R}.$ Indeed,

$$
\begin{aligned} \mathrm{Def}(\mathrm{Cone}(\iota(x))) &\cong \{^*f(1,\varepsilon) \mid f: \mathbb{R}^n \to \mathbb{R} \text{ linear}\} \\ &= \{a + b\varepsilon \in \mathcal{U} \mid a, b \in \mathbb{R}\} \cong \mathbb{R} \overrightarrow{\times} \mathbb{R}. \end{aligned}
$$

Theorem

I ∘ Cone: **v** \mapsto I(Cone(**v**)) induces an order-isomorphism between the set of indexes ordered by truncation and $Spec(\mathcal{F}_n)$ ordered by reverse inclusion.

If $\mathbf{v} = (v_1, \dots, v_k)$ is an index, then we call a subset of \mathbb{R}^n a **v**-cone if it is the positive span of $\{\sum_{i=1}^h r_i v_i \mid h \leq k\}$ for some $0 < r_1, \ldots, r_k \in \mathbb{R}$.

Theorem

Cone(**v**) is the intersection of the enlargements of all the **v**-cones.

Corollary (Panti 1999)

Every prime ℓ -ideal of PWL(Rⁿ) is of the form

 ${f \in \text{PWL}(\mathbb{R}^n) \mid f \text{ vanishes on some } \mathbf{v}\text{-cone}}$

for some index **v**.

Main idea of the proof: Let $f \in PWL(\mathbb{R}^n)$. By the transfer principle, *f vanishes on Cone(**v**) iff f vanishes on some **v**-cone.

Recall: if we map $P \in \text{Spec}(\mathscr{F}_n)$ to a point $x \in \mathcal{U}^n$ such that $\mathsf{V}(P)$ is the closure of x, then we get an embedding $\mathscr{E} \colon \mathop{\mathrm{Spec}}\nolimits(\mathscr{F}_n) \to \mathcal{U}^n.$

Indexes allow us to choose x for every P in a canonical way (modulo fixing a positive infinitesimal $\varepsilon \in \mathcal{U}$).

If $P \in \text{Spec}(\mathscr{F}_n)$, then there is a unique index $\mathbf{v} = (v_1, \ldots, v_k)$ such that $V(P) = Cone(v)$. Define

$$
\mathscr{E}(P) \coloneqq v_1 + \varepsilon v_2 + \cdots + \varepsilon^{k-1} v_k.
$$

If P is a maximal *ℓ*-ideal, then the corresponding index consists of a single vector $\mathbf{v} = (v_1)$. Therefore, $\mathscr{E}(P) \in \mathbb{R}^n$.

We have $\mathscr{E}[\text{Spec}(\mathscr{F}_1)] = \{-1,1\} \subseteq \mathcal{U}$.

Note that $Spec(\mathscr{F}_1) = MaxSpec(\mathscr{F}_1)$.

$Spec(\overline{\mathcal{F}}_2)$

We have $\mathscr{E}[\mathtt{MaxSpec}(\mathscr{F}_2)]=\mathcal{S}^1\subseteq\mathbb{R}^2\subseteq\mathcal{U}^2.$

 $Spec(\mathscr{F}_3)$

We have $\mathscr{E}[\texttt{MaxSpec}(\mathscr{F}_3)] = S^2 \subseteq \mathbb{R}^3 \subseteq \mathcal{U}^3.$

THANK YOU!