Extending the Blok-Esakia Theorem to the monadic setting

Luca Carai University of Milan

joint work with Guram Bezhanishvili

Topology, Algebra, and Categories in Logic 2024 Barcelona, 5 July 2024 The Blok-Esakia Theorem

Intuitionistic logic

- Logic of constructive mathematics.
- Does not assume the law of excluded middle $p \vee \neg p$.
- IPC denotes the intuitionistic propositional calculus.

Modal logic

- Enriches classical logic with modalities.
- The propositional modal logic S4 is obtained by adding to the classical propositional calculus a unary modality □ subject to certain axioms and inference rules.
- S4 is the modal logic of quasi-ordered Kripke frames.

The Gödel (or Gödel-McKinsey-Tarski) translation allows us to think of IPC as a fragment of S4.

The Gödel translation (1933)

$$T(\bot) = \bot$$

$$T(p) = \Box p$$

$$T(\varphi \land \psi) = T(\varphi) \land T(\psi)$$

$$T(\varphi \lor \psi) = T(\varphi) \lor T(\psi)$$

$$T(\varphi \to \psi) = \Box(\neg T(\varphi) \lor T(\psi))$$

Gödel observed that if IPC $\vdash \varphi$, then S4 $\vdash T(\varphi)$, and conjectured that also the converse holds.

Theorem (McKinsey-Tarski 1948)

T embeds IPC faithfully into S4, i.e.

$$IPC \vdash \varphi \quad iff \quad S4 \vdash T(\varphi)$$

for any formula φ .

Dummett and Lemmon in the 1950s started studying the Gödel translation between superintuitionistic logics (i.e., extensions of IPC) and (normal) extensions of S4.

Definition

Let L be a superintuitionistic logic and M an extension of S4. We call L the intuitionistic fragment of M and M a modal companion of L if

$$\mathsf{L} \vdash \varphi \quad \text{iff} \quad \mathsf{M} \vdash \mathsf{T}(\varphi)$$

for any intuitionistic formula φ .

Theorem (Dummett and Lemmon 1959)

Each superintuitionistic logic L has a least modal companion given by $S4 + \{T(\varphi) \mid L \vdash \varphi\}$.

The least modal companion of IPC is S4.

Definition

Let
$$Grz := S4 + \square(\square(p \rightarrow \square p) \rightarrow p) \rightarrow p$$

Grzegorczyk showed that IPC faithfully embeds into Grz.

Theorem (Grzegorczyk 1967)

Grz is a modal companion of IPC.

Esakia showed that Grz is the largest extension of S4 with this property.

Theorem (Esakia's Theorem 1976)

Grz is the greatest modal companion of IPC.

Maksimova and Rybakov introduced the mappings ρ , τ , and σ .

Definition

Let M be an extension of S4 and L a superintuitionistic logic.

- $\rho M := \{ \varphi \mid M \vdash T(\varphi) \}$, the intuitionistic fragment of M.
- $\tau L := S4 + \{T(\varphi) \mid L \vdash \varphi\}$, the least modal companion of L.

Theorem (Maksimova and Rybakov 1974)

Every superintuitionistic logic L has a greatest modal companion σ L.

Theorem (Blok-Esakia 1976)

 σ is an isomorphism between the lattice of superintuitionistic logics and the lattice of extensions of Grz, whose inverse is ρ .

Corollary

$$\sigma L = Grz + \{T(\varphi) \mid L \vdash \varphi\}.$$

The algebraic proof of the Blok-Esakia Theorem

A Heyting algebra H is a bounded distributive lattice equipped with a binary operation \rightarrow such that for every $a, b, c \in H$:

$$a \wedge b \leq c \iff a \leq b \rightarrow c$$
.

Theorem (algebraic semantics for IPC)

 $IPC \vdash \varphi$ iff $H \vDash \varphi$ for every Heyting algebra H.

Definition

An S4-algebra B is a boolean algebra equipped with a unary operator \square such that such that for every $a, b \in B$:

$$\Box 1 = 1$$
, $\Box (a \land b) = \Box a \land \Box b$, $\Box a \leq a$, $\Box a = \Box \Box a$.

$$\Box a < a$$
. $\Box a$

$$\Box a = \Box \Box$$

Theorem (algebraic semantics for S4)

$$S4 \vdash \varphi$$
 iff $B \vDash \varphi$ for every $S4$ -algebra B .

- If B is an S4-algebra, then $\mathcal{O}(B) := \{b \in B \mid \Box b = b\}$ is a Heyting algebra with $a \to b := \Box(\neg a \lor b)$.
- If H is a Heyting algebra, then the free boolean extension $\mathcal{B}(H)$ of H with the operator

$$\square\left(\bigwedge_1^n(\lnot a_i\lor b_i)
ight)\coloneqq \bigwedge_1^n(a_i o b_i)$$

is an S4-algebra. In fact, a Grz-algebra.

Theorem

- If B is an S4-algebra, then $\mathcal{O}(B) \vDash \varphi$ iff $B \vDash T(\varphi)$.
- If H is an Heyting algebra, then $\mathcal{OB}(H) \cong H$.
- If B is an S4-algebra, then $\mathcal{BO}(B)$ embeds into B.

- The category of **finite** Heyting algebras is dually equivalent to the category of **finite** posets and p-morphisms.
- The category of **finite** S4-algebras is dually equivalent to the category of finite quasi-orders and p-morphisms.

- The category of finite Heyting algebras is dually equivalent to the category of finite posets and p-morphisms.
- The category of **finite** S4-algebras is dually equivalent to the category of finite quasi-orders and p-morphisms.

 \mathcal{O} corresponds to taking the skeleton of a quasi-order.

- The category of finite Heyting algebras is dually equivalent to the category of finite posets and p-morphisms.
- The category of **finite** S4-algebras is dually equivalent to the category of finite quasi-orders and p-morphisms.

 \mathcal{B} corresponds to thinking of a poset as a quasi-order.

- The category of Heyting algebras is dually equivalent to the category of Esakia spaces and continuous p-morphisms.
- The category of S4-algebras is dually equivalent to the category of S4-spaces and continuous p-morphisms.

These operations extend to Esakia spaces and S4-spaces.

Superintuitionistic logics \longleftrightarrow Varieties of Heyting algebras Extensions of S4 \longleftrightarrow Varieties of S4-algebras

If \mathbb{K} is a class of S4-algebras, let $\mathcal{O}(\mathbb{K}) \coloneqq \{\mathcal{O}(B) \mid B \in \mathbb{K}\}.$

Theorem

- O commutes with H, S, and P.
- If $\mathbb V$ is a variety of S4-algebras corresponding to an extension M of S4, then $\mathcal O(\mathbb V)$ is a variety of Heyting algebras and corresponds to ρM .

If \mathbb{K} is a class of Heyting algebras, let $\mathcal{B}(\mathbb{K}) := \{\mathcal{B}(H) \mid H \in \mathbb{K}\}.$

Proposition

 ${\cal B}$ commutes with H and S, but it does not commute with infinite products.

Define $\mathcal{B}^*(\mathbb{K}) := \mathsf{HSP}(\mathcal{B}(\mathbb{K}))$. From Maksimova and Rybakov (1974) it follows that:

Theorem

Let V be a variety of Heyting algebras.

- $\mathcal{B}^*(\mathbb{V})$ is a variety of Grz-algebras.
- $\mathcal{OB}^*(\mathbb{V}) = \mathbb{V}$. Consequence: every L has a modal companion; i.e., ρ is onto. In particular, τL is the least modal companion of L.
- $\mathcal{B}^*(\mathbb{V})$ is the smallest variety \mathbb{W} of S4-algebras such that $\mathcal{O}(\mathbb{W}) = \mathbb{V}$. **Consequence**: every L has a largest modal companion σL , which corresponds to $\mathcal{B}^*(\mathbb{V})$ when L corresponds to \mathbb{V} .

Theorem (Blok's Lemma 1976)

- ullet If B is a Grz-algebra, then B and $\mathcal{BO}(B)$ generate the same variety.
- If \mathbb{W} is a variety of Grz-algebras, then $\mathcal{B}^*\mathcal{O}(\mathbb{W}) = \mathbb{W}$.

Therefore, \mathcal{O} (restricted to varieties of Grz-algebras) and \mathcal{B}^* are inverses of each other. Consequence: The Blok-Esakia Theorem.

What about the predicate setting?

Rasiowa and Sikorski extended the Gödel translation to the predicate setting as follows:

$$T(\forall x\varphi) = \Box \forall x T(\varphi)$$

$$T(\exists x\varphi) = \exists x T(\varphi)$$

Theorem (Rasiowa-Sikorski 1953)

T faithfully embeds the intuitionistic predicate calculus IQC into the predicate S4 logic QS4, i.e.

$$\mathsf{IQC} \vdash \varphi \qquad \textit{iff} \qquad \mathsf{QS4} \vdash T(\varphi)$$

for any formula φ .

The monadic fragment (or the one-variable fragment) of a predicate logic L is the set of theorems of L in one fixed variable containing only unary predicate symbols.

Example

$$\forall x (P(x) \rightarrow \exists x Q(x))$$

$$\forall (p \rightarrow \exists q)$$

Therefore, monadic fragments can be treated like propositional modal logics with additional modalities \forall , \exists .

- MIPC is the monadic fragment of IQC.
- MS4 is the monadic fragment of QS4.

The predicate Gödel translation faithfully embeds MIPC into MS4.

$$T(\forall \varphi) = \Box \forall T(\varphi)$$

$$T(\exists \varphi) = \exists T(\varphi)$$

Let M be an extension of MS4 and L an extension of MIPC.

The intuitionistic fragment of M and modal companions of L are defined similarly to the propositional case.

Definition

- $\rho M := \{ \varphi \mid M \vdash T(\varphi) \}$, the intuitionistic fragment of M.
- $\tau L := MS4 + \{T(\varphi) \mid L \vdash \varphi\}.$
- $\sigma L := MGrz + \{T(\varphi) \mid L \vdash \varphi\}$, where MGrz = MS4 + grz.

What happens in the monadic setting?

- Is τL a modal companion of L?
- Is σL a modal companion of L? If so, is it the largest?
- Does Blok-Esakia hold; i.e., is $\sigma \colon \mathsf{Ext}(\mathsf{MIPC}) \to \mathsf{Ext}(\mathsf{MGrz})$ an isomorphism?

A monadic Heyting algebra H is a Heyting algebra equipped with two unary operators \forall , \exists satisfying for every $a, b \in H$:

$$\forall (a \land b) = \forall a \land \forall b \qquad \exists (a \lor b) = \exists a \lor \exists b$$

$$\forall 1 = 1 \qquad \exists 0 = 0$$

$$\forall a \le a \qquad a \le \exists a$$

$$\forall \exists a = \exists a \qquad \exists \forall a = \forall a$$

$$\exists (\exists a \land b) = \exists a \land \exists b$$

A monadic S4-algebra (or MS4-algebra) is an S4-algebra equipped with a unary operator \forall satisfying for any $a, b \in B$:

$$\forall (a \land b) = \forall a \land \forall b$$
 $\forall 1 = 1$ $a \le \forall \neg \forall \neg a$ $\Box \forall a < \forall \Box a$

Theorem (Algebraic semantics)

- MIPC $\vdash \varphi$ iff $H \vDash \varphi$ for every monadic Heyting algebra H.
- MS4 $\vdash \varphi$ iff $B \vDash \varphi$ for every MS4-algebra B. Extensions of MIPC \longleftrightarrow Varieties of monadic Heyting algebras. Extensions of MS4 \longleftrightarrow Varieties of MS4-algebras.

Definition

- If B is an MS4-algebra, then $(\mathcal{O}(B), \Box \forall, \exists)$ is a monadic Heyting algebra.
- (Fischer Servi 1977) If H is a **finite** monadic Heyting algebra, then the free boolean extension $\mathcal{B}(H)$ can be equipped with a structure of MS4-algebra. It is always a MGrz-algebra.

Theorem (Fischer Servi 1977)

If B is an MS4-algebra, then $\mathcal{O}(B) \vDash \varphi$ iff $B \vDash T(\varphi)$.

- The category of finite monadic Heyting algebras is dually equivalent to the category of finite MIPC-frames.
- The category of finite MS4-algebras is dually equivalent to the category of finite MS4-frames.

An MIPC-frame (MS4-frame) is a poset (quasi-order) (X, R) equipped with an additional equivalence relation E such that: xEy and yRz imply there is $u \in X$ s.t. xRu and uEz.

- The category of **finite** monadic Heyting algebras is dually equivalent to the category of finite MIPC-frames.
- The category of finite MS4-algebras is dually equivalent to the category of finite MS4-frames.

 \mathcal{O} corresponds to taking the skeleton of an MS4-frame.

- The category of **finite** monadic Heyting algebras is dually equivalent to the category of finite MIPC-frames.
- The category of finite MS4-algebras is dually equivalent to the category of finite MS4-frames.

 \mathcal{B} corresponds to thinking of a finite MIPC-frame as an MS4-frame.

- The category of monadic Heyting algebras is dually equivalent to the category of descriptive MIPC-frames.
- The category of MS4-algebras is dually equivalent to the category of descriptive MS4-frames.

Problem

An infinite descriptive MIPC-frame is not always a descriptive MS4-frame.

If \mathbb{K} is a class of MS4-algebras, let $\mathcal{O}(\mathbb{K}) := {\mathcal{O}(B) \mid B \in \mathbb{K}}.$

Theorem (Bezhanishvili, C.)

- O commutes with H and P.
- $\mathcal{O}S(\mathbb{K}) \subseteq S\mathcal{O}(\mathbb{K})$, the other inclusion is not true in general.
- If $\mathbb V$ is a variety of MS4-algebras, then $S\mathcal O(\mathbb V)$ is the variety generated by $\mathcal O(\mathbb V)$.

Problem

If $\mathbb V$ is a variety of MS4-algebras, then $\mathcal O(\mathbb V)$ is not necessarily a variety.

Theorem (Bezhanishvili, C.)

Let $\mathbb V$ be a variety of MS4-algebras corresponding to an extension M of MS4. Then $S\mathcal O(\mathbb V)$ is the variety of monadic Heyting algebras corresponding to ρM .

Theorem (Bezhanishvili, C.)

- SO preserves joins of varieties.
- SO does not preserve binary intersections of varieties.
- SO is not one-to-one on varieties of MGrz-algebras.

	Propositional Setting	Monadic Setting
ρ	preserves arbitrary \land and \lor	preserves arbitrary \bigwedge , but not binary \lor
	$ ho\colon Ext(Grz) o Ext(IPC)$ iso	$ \rho\colon Ext(MGrz) \to Ext(MIPC) $ is not 1-1
τ	preserves arbitrary ∧ and ∨	preserves binary ∧ and arbitrary ∨
	preserves arbitrary \land and \lor $\tau \colon Ext(IPC) \to Ext(S4)$ 1-1	???
σ	preserves arbitrary ∧ and ∨	preserves binary \land and arbitrary \lor
	$\sigma \colon Ext(IPC) o Ext(Grz)$ iso	???

Failure of the monadic Blok-Esakia Theorem (Bezhanishvili, C.)

 $\sigma \colon \mathsf{Ext}(\mathsf{MIPC}) \to \mathsf{Ext}(\mathsf{MGrz})$ is not onto. In particular, it is not an isomorphism.

Sketch of the proof:

 σ is left adjoint to $\rho \colon \mathsf{Ext}(\mathsf{MGrz}) \to \mathsf{Ext}(\mathsf{MIPC})$, which we have seen is not one-to-one. Therefore, σ cannot be onto.

Three equivalent open problems

- Does every extension of MIPC have a modal companion?
- Is ρ onto?
- Is τ one-to-one?

Proposition

- If L has a modal companion, then the least such is τL .
- If L is Kripke complete, then it has a modal companion.

Does Esakia's Theorem generalize to MIPC?

- Is MGrz a modal companion of MIPC? √
- Is MGrz the largest modal companion of MIPC?
- Is there a largest modal companion of MIPC?

Theorem (Bull 1965, Ono 1977, Fischer Servi 1978)

MIPC has the finite model property.

Theorem (Esakia 1988)

MGrz is a modal companion of MIPC.

While

$$IQC \vdash \neg \neg \forall x P(x) \rightarrow \forall x \neg \neg P(x),$$

the Kuroda formula $\forall x \neg \neg P(x) \rightarrow \neg \neg \forall x P(x)$ is not a theorem of IQC.

Definition

Let Kur := MIPC + $\forall \neg \neg p \rightarrow \neg \neg \forall p$ be the monadic Kuroda logic.

Kur is a proper extension of MIPC.

Theorem (Esakia-Bezhanishvili 1998)

Kur is the splitting logic axiomatized by the Jankov formula $\ \mathcal{J}(ig[ig])$.

 $\mathsf{GKur} := \mathsf{MS4} + \Box \forall \Diamond \Box p \to \Diamond \Box \forall p.$

 $\mathsf{LKur} := \mathsf{MS4} + \Box \forall \Diamond \Box p \to \Diamond \forall p.$

We call GKur the global Kuroda logic and LKur the local Kuroda logic.

Theorem (Bezhanishvili, C.)

- $\mathsf{GKur} = \tau \mathsf{Kur}$ and is the least modal companion of Kur .
- ullet LKur is the splitting logic axiomatized by $\ \mathcal{J}(igl[igr])$.

Theorem (Bezhanishvili, C.)

- LKur \subsetneq GKur.
- LKur is a modal companion of MIPC.
- LKur \vee MGrz = GKur \vee MGrz.

Failure of Esakia's Theorem for MIPC (Bezhanishvili, C.)

There is no greatest modal companion of MIPC.

Sketch of the proof:

- LKur and MGrz are both modal companions of MIPC.
- LKur ∨ MGrz is not a modal companion of MIPC because

$$\mathsf{GKur} \subseteq \mathsf{GKur} \vee \mathsf{MGrz} = \mathsf{LKur} \vee \mathsf{MGrz}.$$

 There cannot exists a largest modal companion of MIPC because it would contain LKur V MGrz, which is not a modal companion of MIPC.

Open problems

By Zorn's Lemma there are maximal modal companions of MIPC.

- How many are there?
- Is MGrz maximal?

THANK YOU!