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Definition
A Heyting algebra H is a distributive lattice equipped with a binary
operation → satisfying

a ∧ b ≤ c iff a ≤ b → c

for any a, b, c ∈ H.

Heyting algebras provide the algebraic semantics for the intuitionistic
propositional calculus IPC.

Intuitionistic logic is the logic of constructive mathematics and is obtained
by weakening the principles of classical logic via the rejection of the law of
excluded middle (p ∨ ¬p).
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Definition
A Heyting algebra F is said to be free over X ⊆ F if for any Heyting
algebra H and function f : X → H, there is a unique Heyting algebra
homomorphism g : F → H extending f .

F H

X

∃! g

f

X generates F .
Two Heyting algebras free over two sets of the same cardinality are
isomorphic.
Let Form(X ) be the set of formulas with variables from a set X and
define φ ∼ ψ iff ⊢IPC φ ↔ ψ. Then Form(X )/∼ is the Heyting
algebra free over X .
If X ̸= ∅, then the free Heyting algebra over X is infinite.
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The free Heyting algebra over 1 generator is also known as the
Rieger-Nishimura lattice.

⊥

p ¬p

p ∨ ¬p¬¬p

¬¬p ∨ ¬p ¬¬p → p

¬¬p ∨ (¬¬p → p) (¬¬p → p) → (p ∨ ¬p)

⊤

The free Heyting algebra over 2 generators is very complicated.

3 / 24



Definition
An Esakia space is a Stone space X equipped with a partial order ≤ such
that:

if x ∈ X , then ↑x = {y ∈ X | x ≤ y} is closed;
if U ⊆ X is clopen (closed and open), then
↓U = {y ∈ X | y ≤ x for some x ∈ U} is clopen.

If X is an Esakia space, then the clopen subsets U of X that are
upsets (if x ∈ U then ↑x ⊆ U) form a Heyting algebra ClopUp(X ).
To every Heyting algebra H it is possible to associate an Esakia space
X such that H ∼= ClopUp(X ).
Morphisms between Esakia spaces are continuous maps that are
p-morphisms (f [↑x ] = ↑f (x)).

Theorem (Esakia duality 1974)
The category of Heyting algebras is dually equivalent to the category of
Esakia spaces.
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The coloring technique developed by Esakia and Grigolia in the 1970s
allows to dually describe the free Heyting algebra Fn over n generators for
any n ∈ N.
The procedure builds a poset Xn as follows:

the layers of Xn are built each one at the time from the top;
each point constructed is associated with a color, which is an element
of P({1, . . . , n}), and the coloring preserves the order;
the top layer contains 2n points, one for each color;
two points of the same color cannot have the same elements as
immediate successors;
if a point has only one immediate successor, then its color should be
strictly smaller than the one of the successor.

Xn together with the coloring is known as the n-universal model.

Theorem
Fn is isomorphic to a subalgebra of Up(Xn).
Xn is the dense and open upset of the Esakia dual of Fn consisting of
the points of finite depth (↑x is finite).
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X1 is also known as the Rieger-Nishimura ladder.

The Esakia dual of F1 is the following.

However, already the Esakia dual of F2 is extremely complicated.
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Free Gödel algebras
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Definition
A Heyting algebra G is called a Gödel algebra if (a → b) ∨ (b → a) = 1 for
any a, b ∈ G .

Gödel algebras provide the algebraic semantics for the propositional
Gödel-Dummett logic LC, which is obtained by adding the prelinearity
axiom (p → q) ∨ (q → p) to IPC.
We can think of LC as the extension of IPC in which “the truth values are
linearly ordered”. Indeed, LC is the logic of the class of all finite Heyting
chains and the logic of any infinite Heyting chain.
Since LC is the logic of [0, 1] as a Heyting chain, it can also be thought of
as a fuzzy logic. In fact, LC is a t-norm fuzzy logic with the minimum
t-norm.

Definition
A Gödel algebra F is said to be free over X ⊆ F if for any Gödel algebra G
and function f : X → G , there is a unique Heyting algebra homomorphism
g : F → G extending f .
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Proposition
An Esakia space X is dual to a Gödel algebra iff it is a root system; i.e.,
↑x is a chain for any x ∈ X. We call such spaces Esakia root systems.

We can adapt the construction of the n-universal model to LC, by only
adding points with a single immediate successor. So, the colors strictly
decrease by moving down the layers.
The n-universal model for LC is finite and hence coincides with the Esakia
dual of the free Gödel algebra on n generators.

Colors:

{1}

∅

Colors:
{1, 2}

{1} {2}

∅
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Proposition
The n-universal model for LC is isomorphic to the set of all nonempty
chains in P({1, . . . , n}) ordered by C ≤ D iff D is an upset of C.
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Proposition
The n-universal model for LC is isomorphic to the set of all nonempty
chains in P({1, . . . , n}) ordered by C ≤ D iff D is an upset of C.

P

What is the Gödel algebra dual to what you get if you replace
P({1, . . . , n}) with an arbitrary finite poset P?
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Definition
A Gödel algebra F is said to be free over a sublattice D ⊆ F if for any
Gödel algebra G and lattice homomorphism f : D → G , there is a unique
Heyting algebra homomorphism g : F → G extending f .

F G

D

∃! g

f

Given a distributive lattice D, it is possible to construct a free Gödel
algebra over D as a quotient of the free Gödel algebra over the underlying
set of D.

Theorem (Aguzzoli, Gerla, and Marra 2008)
Let D be a finite distributive lattice and P a poset such that D ∼= Up(P).
The poset of all nonempty chains in P is the Esakia dual of the free Gödel
algebra over D.

Every finite distributive lattice is isomorphic to Up(P) for some poset P.
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How to generalize this result to any distributive lattice D?

Definition
A Priestley space is a Stone space X equipped with a partial order ≤ such
that

x ≰ y implies there is U clopen upset such that x ∈ U and y /∈ U.

If X is a Priestley space, then its clopen upsets form a distributive
lattice ClopUp(X ).
To every distributive lattice D it is possible to associate a Priestley
space X such that D ∼= ClopUp(X ).
Morphisms between Priestley spaces are continuous maps that
preserve the order.

Theorem (Priestley duality 1972)
The category of distributive lattices is dually equivalent to the category of
Priestley spaces.
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Definition
If X is a Priestley space, we define

CC(X ) := {C ⊆ X | C is a nonempty closed chain}.

We order CC(X ) by setting C ≤ D iff D is an upset of C .

We topologize CC(X ) by the Vietoris topology. A subbasis for the
topology on CC(X ) is given by the sets □U and ♢U for any U clopen of X :

□U = {C ∈ CC(X ) | C ⊆ U},
♢U = {C ∈ CC(X ) | C ∩ U ̸= ∅}.

Theorem (C. 2023)
If X is a Priestley space, then CC(X ) is an Esakia root system.

The opens (clopens) of CC(X ) are exactly the (finite) unions of subsets of
the form

□U ∩ ♢V1 ∩ · · · ∩ ♢Vn

with U,V1, . . . ,Vn clopens of X such that V1, . . . ,Vn ⊆ U. 12 / 24



Proposition
Every nonempty closed chain in a Priestley space has a least element.

Let m : CC(X ) → X be the map that sends C to min(C).

Theorem (C. 2023)
m is a continuous order-preserving map.
For any Esakia root system Y and continuous order-preserving map
h : Y → X there is a unique continuous p-morphism k : Y → CC(X )
such that m ◦ k = h.

CC(X )

Y X

m

h

∃! k

Let D be a distributive lattice and X its Priestley dual. Then the free
Gödel algebra over D is dual to the Esakia space CC(X ).
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Let 2 be the 2-element chain with the discrete topology. If S is a set, we
consider 2S with the product topology and the order given by f ≤ g iff
f (s) ≤ g(s) for each s ∈ S.

Proposition
2S is a Priestley space dual to the distributive lattice free over S.

The Gödel algebra free over the distributive lattice free over a set S is the
Gödel algebra free over S. Therefore,

Theorem (C. 2023)
The Gödel algebra free over a set S is dual to the Esakia space CC(2S).

Since P({1, . . . , n}) with the discrete topology is isomorphic to 2{1,...,n},
this generalizes the dual description of finitely generated free Gödel
algebras due to the coloring technique.
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Ghilardi in 1992 showed that Heyting algebras free over finitely many
generators are bi-Heyting algebras.

Definition
Let D be a distributive lattice.

D is a co-Heyting algebra if its order dual is a Heyting algebra.
D is a bi-Heyting algebra if it is both a Heyting and a co-Heyting
algebra.

Free Gödel algebras over finitely many generators are finite, and so are
clearly bi-Heyting algebras. We now see that this is also true with infinitely
many generators.

Definition
Let X be a Priestley space.

X is a co-Esakia space if (X ,≥) is an Esakia space.
X is a bi-Esakia space if it is both an Esakia and a co-Esakia space.

Co-Esakia spaces are dual to co-Heyting algebras and bi-Esakia spaces are
dual to bi-Heyting algebras.
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Theorem (C. 2023)
The free Gödel algebra over a distributive lattice D is a bi-Heyting algebra
whenever D is a co-Heyting algebra.

Proof (sketch).
Suppose X is a co-Esakia space. We show that CC(X ) is bi-Esakia.
Define ⇑(V1, . . . ,Vn) = ↑(· · · ↑(↑(↑V1 ∩ V2) ∩ V3) · · · ∩ Vn).
If V1, . . . ,Vn are clopens, then ⇑(V1, . . . ,Vn) is clopen in X .
↑(□U ∩ ♢V1 ∩ · · · ∩ ♢Vn) equals

□U ∩
⋃

I⊆{1,...,n}


⋂

i∈I
♢Vi

 ∩
⋃

{j1,...,jk}
={1,...,n}\I

□⇑(Vj1 , . . . ,Vjk )

 ,
which is clopen in CC(X ) because X is co-Esakia.
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Theorem (C. 2023)
Free Gödel algebras are bi-Heyting algebras.

Proof (sketch).
The Gödel algebra free over a set S is the Gödel algebra free over the
distributive lattice free over S.
Free distributive lattices are co-Heyting algebras (actually bi-Heyting).
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Coproducts of Gödel algebras
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Definition
Let {Hi} be a family of Heyting algebras. A Heyting algebra

⊕
i Hi is

called the coproduct of the Hi ’s if there are Heyting algebra
homomorphisms fi : Hi →

⊕
i Hi such that for any Heyting algebra K and

Heyting algebra homomorphisms gi : Hi → K there exists a unique Heyting
algebra homomorphism h :

⊕
i Hi → K and h ◦ fi = gi for each i .

H1

H1 ⊕ H2 K

H2

f1

g1

∃! h

f2
g2

Coproducts of Gödel algebras are defined similarly.
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Coproducts of Heyting algebras are complicated. In 2006 Grigolia dually
described coproducts of two finite Heyting algebras.

If 3 is the 3-element Heyting chain, then 3 ⊕ 3 is infinite. The following
are the first 3 layers of its Esakia dual.

The size of the layers grow exponentially:
the 4th layer has 72 points
and the 5th layer has more than 1021 points.
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Coproducts of Gödel algebras are much simpler. D’Antona and Marra in
2006 dually described the coproduct of two finite Gödel algebras, which is
always finite.

If 3 is the 3-element chain thought of as a Gödel algebra, then 3 ⊕ 3 is
finite (it has 22 elements). The following is its Esakia dual.
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Let {Xi} be a family of Esakia root systems. We denote by
∏

i Xi their
cartesian product with the product topology and the product order.

Definition
Let

⊗
i Xi be the subspace of CC

( ∏
i Xi

)
given by the closed chains in∏

i Xi such that πi [C ] is a principal upset of Xi for each i ∈ I.

2 × 2

π1 π2
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Let pi :
⊗

i Xi → Xi be the map that sends C to πi(min C).

Theorem (C. 2023)⊗
i Xi is an Esakia root system and each pi is a continuous

p-morphism.
For any Esakia root system Y and continuous p-morphisms
hi : Y → Xi , there is a unique continuous p-morphism k : Y →

⊗
i Xi

such that pi ◦ k = hi for each i.
X1

Y X1 ⊗ X2

X2

∃! k

h1

h2

p2

p1

Let {Gi} be a family of Gödel algebras and {Xi} their dual Esakia
root systems. Then

⊕
i Gi is dual to

⊗
i Xi .
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The case of Gödel algebras of bounded depth
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Each extension of LC is of the form LCn := LC + bdn, where bdn is the
bounded depth n axiom for n ∈ N.

The algebraic semantics for LCn is given by the Gödel algebras validating
bdn. We denote their category by GAn.

Proposition
A Gödel algebra is in GAn iff their dual Esakia space has depth at most n.

Theorem (C. 2023)
Let D be a distributive lattice dual to the Priestley space X. The
GAn-algebra free over D is dual to the subspace of CC(X ) given by
the chains of length at most n.
Let {Gi} be a family of algebras in GAn dual to the Esakia root
systems {Xi}. Their coproduct in GAn is dual to the subspace of⊗

i Xi given by the chains of length at most n.
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Future work
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The modal logic S4.3 is the extension of the logic S4 axiomatized by
□(□p → q) ∨ □(□q → p). It is the least modal companion of LC.

Esakia and Grigolia in 1975 described the dual of the free S4.3-algebra
with 1 generator, which is infinite.
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THANK YOU!



□U∩♢V1 ∩ ♢V2 ∩ ♢V3

= {C ∈ CC(X ) | C ⊆ U, C ∩ V1 ̸= ∅, C ∩ V2 ̸= ∅, C ∩ V3 ̸= ∅}

X

U V1

V2

V3
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